1 |
Jadoul, Y., Thompson, B., & de Boer, B. (2018). Introducing Parselmouth: A Python interface to Praat. Journal of Phonetics, 71, 1-15.
DOI
|
2 |
Kang, Y. A., Yoon, K. C., Lee, H. S., & Seong, C. J. (2010). A comparison of parameters of acoustic vowel space in patients with Parkinson's disease. Phonetics and Speech Sciences, 2(4), 185-192.
|
3 |
Kim, M. J., & Kim, H. (2012, September). Combination of multiple speech dimensions for automatic assessment of dysarthric speech intelligibility. Proceedings of the 13th Annual Conference of the International Speech Communication Association (INTERSPEECH). Portland, OR.
|
4 |
Kim, S., Kim, J. H., & Ko, D. H. (2014). Characteristics of vowel space and speech intelligibility in patients with spastic dysarthria. Communication Sciences & Disorders, 19(3), 352-360.
DOI
|
5 |
Lansford, K. L., & Liss, J. M. (2014). Vowel acoustics in dysarthria: Speech disorder diagnosis and classification. Journal of Speech, Language, and Hearing Research, 57(1), 57-67.
DOI
|
6 |
Narendra, N. P., & Alku, P. (2021). Automatic assessment of intelligibility in speakers with dysarthria from coded telephone speech using glottal features. Computer Speech & Language, 65, 101117.
DOI
|
7 |
Whitehill, T. L., & Ciocca, V. (2000). Speech errors in Cantonese speaking adults with cerebral palsy. Clinical Linguistics & Phonetics, 14(2), 111-130.
DOI
|
8 |
Mairano, P., & Romano, A. (2010). Un confronto tra diverse metriche ritmiche usando Correlatore. In S. Schmid, M. Schwarzenbach, & D. Studer (Eds.), La dimensione temporale del parlato (pp. 79-100). Torriana, Italy: EDK.
|
9 |
Lee, Y. M., Sung, J. E., Sim, H. S., Han, J. H., & Song, H. N. (2012). Analysis of articulation error patterns depending on the level of speech intelligibility in adults with dysarthria. The Korean Academy of Speech-Language Pathology and Audiology, 17(1), 130-142.
|
10 |
Kim, M. J., Kim, Y., & Kim, H. (2015). Automatic intelligibility assessment of dysarthric speech using phonologically-structured sparse linear model. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(4), 694-704.
DOI
|
11 |
Hernandez, A., Kim, S., & Chung, M. (2020). Prosody-based measures for automatic severity assessment of dysarthric speech. Applied Sciences, 10(19), 6999.
DOI
|
12 |
Lee, E., & Kim, J. (2012). Correlation of speech rate changes on intelligibility and acceptability in dysarthric speakers. Journal of Speech-language & Hearing Disorders, 21(3), 127-144.
DOI
|
13 |
Narendra, N. P., & Alku, P. (2018, September). Dysarthric Speech Classification Using Glottal Features Computed from Non-words, Words and Sentences. Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH 2020) (pp. 3403-3407). Hyderabad, India.
|
14 |
Seo, I., & Seong, C. (2013). Voice quality of dysarthric speakers in connected speech. Phonetics and Speech Sciences, 5(4), 33-41.
DOI
|
15 |
Bhat, C., & Strik, H. (2020). Automatic assessment of sentence-level dysarthria intelligibility using BLSTM. IEEE Journal of Selected Topics in Signal Processing, 14(2), 322-330.
DOI
|
16 |
Choi, D. L., Kim, B. W., Kim, Y. W., Lee, Y. J., Um, Y., & Chung, M. (2012, May). Dysarthric speech database for development of QoLT software technology. Proceedings of the 8th International Conference on Language Resources and Evaluation (pp. 3378-3381). Istanbul, Turkey.
|
17 |
Seo I. H. (2014). Acoustic measures of voice quality and phonation types across speech conditions in dysarthria (Doctoral dissertation). Chungnam National University, Daejeon, Korea.
|
18 |
McFee, B., Colin, R., Dawen, L., Ellis, D. P. W., McVicar, M., Battenberg, E., & Nieto, O. (2015, July). Librosa: Audio and music signal analysis in Python. Proceedings of the 14th Python in Science Conference (pp. 18-25). Austin, TX.
|
19 |
Clarke, W. M., & Hoops, H. R. (1980). Predictive measures of speech proficiency in cerebral palsied speakers. Journal of Communi- cation Disorders, 13(5), 385-394.
DOI
|
20 |
Dellwo, V., & Wagner, P. (2003, August). Relationships between speech rate and rhythm. Proceedings of the 15th International Congress of the Phonetic Sciences. Barcelona, Spain.
|
21 |
Hong, S., & Byeon, H. (2014). Speech rate and pause characteristics in speaker with flaccid dysarthria. The Korea Academia-Industrial Cooperation Society, 15(1), 2930-2936.
DOI
|
22 |
Hong, S. M., Jeong, P. Y., & Sim, H. S. (2018). Comparison of perceptual assessment for dysarthric speech: The detailed and general assessments. Communication Sciences & Disorders, 23(1), 242-253.
DOI
|
23 |
Janbakhshi, P., Kodrasi, I., & Bourlard, H. (2019, May). Pathological speech intelligibility assessment based on the short-time objective intelligibility measure. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, UK.
|
24 |
Kadi, K. L., Selouani, S. A., Boudraa, B., & Boudraa, M. (2013, October). Discriminative prosodic features to assess the dysarthria severity levels. Proceedings of the World Congress on Engi- neering. London, UK.
|
25 |
Hernandez, A., Yeo, E. J., Kim, S., & Chung, M. (2020). Dysarthria detection and severity assessment using rhythm-based metrics. Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH 2020) (pp. 2897-2901). Shanghai, China.
|
26 |
Boersma, P., & Weenink, D. (2001). Praat, a system for doing phonetics by computer. Glot International, 5(9/10), 341-345.
|
27 |
Darley, F. L., Aronson, A. E., & Brown, J. R. (1969). Differential diagnostic patterns of dysarthria. Journal of Speech and Hearing Research, 12(2), 246-269.
DOI
|