Browse > Article
http://dx.doi.org/10.13064/KSSS.2016.8.4.097

A CART-based diagnostic model using speech technology for evaluating mental fatigue caused by monotonous work  

Kwon, Chul Hong (대전대학교)
Publication Information
Phonetics and Speech Sciences / v.8, no.4, 2016 , pp. 97-101 More about this Journal
Abstract
This paper presents a CART(Classification and Regression Tree)-based model to diagnose mental fatigue using speech technology. The parameters used in the model are the significant speech parameters highly correlated to the fatigue and questionnaire responses obtained before and after imposing the fatigue. It is shown from the experiments that the proposed model achieves classification accuracies of 96.67% and 98.33% using the speech parameters and questionnaire responses, respectively. This implies that the proposed model can be used as a tool to diagnose the mental fatigue, and that speech technology is useful to diagnose the fatigue.
Keywords
mental fatigue; diagnosis; CART; speech technology;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Choi, E., & Song, M. (2003). Concept analysis : Fatigue. Journal of Korean Academy of Women's Health Nursing, 9(1), 61-69. (최의순.송민선 (2003). 피로의 개념 분석. 여성건강간호학회지, 9(1), 61-69.)
2 Lee, C., Ko, H., & Yun, Y. (2000). The study on Korean-version-questionnaire for measurement of mental fatigue during monotonous task. Proceedings of Spring Conference of the Korean Society for Emotion & Sensibility (pp. 195-202). (이창미.고한우.윤용현 (2000). 단조작업시 정신피로도 측정을 위한 한국어판 질문지에 관한 연구. 한국감성과학회 춘계 학술대회 논문집, 195-202.)
3 Tylee, A., & Gandhi, P. (2005). The importance of somatic symptoms in depression in primary care. Primary Care Companion Journal of Clinic Psychiatry, 7, 167-176.   DOI
4 Lee, M., & Joe, S. (2007). Biological aspects of fatigue. Korean Journal of Psychosomatic Medicine, 15(2), 65-72. (이문수.조숙행 (2007). 피로의 생물학적 측면. 정신신체의학, 15(2), 65-72.)
5 Yun, Y., Ko, H., Kim, D., & Lee, C. (1999). Assesment of mental fatigue during monotonous task. Proceedings of Autumn Conference of the Korean Society for Emotion & Sensibility (pp. 222-226). (윤용현.고한우.김동윤.이창미 (1999). 단조작업에 의한 정신피로의 평가 -생리신호를 중심으로. 감성공학 추계학술대회 논문집, 222-226.)
6 Ko, H., Yun, Y., Kim, D., & Lee, C. (2000). Measurement and assessment of mental fatigue using biosignals during monotonous task. Korean Journal of the Science of Emotion & Sensibility, 3(1), 1-6. (고한우.윤용현.김동윤.이창미 (2000). 생리신호를 사용한 단조 작업 수행시 정신피로도의 측정과 평가. 한국감성과학회지, 3(1), 1-6.)
7 Lal, S. K., & Craig, A. (2001). A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55, 173-194.   DOI
8 Lin, C. T., Wu, R. C., Jung, T. P., Liang, S. F., & Huang, T. Y. (2005). Estimating driving performance based on EEG spectrum analysis. European Association for Signal Processing (EURASIP) Journal on Applied Signal Processing, 19, 3165-3174.
9 Kim, S., & Park, S. (2002). An assessment method of fatigue in a long-term driving. Proceedings of Spring Conference of Korean Management Science (pp. 772-778). (김선웅.박세진 (2002). 장시간 주행에 따른 피로도의 평가방법에 관한 연구. 한국경영과학회 춘계학술대회논문집, 772-778.)
10 Song, S., Kim, J., Jang, J., & Kwon, C. (2013). A validity study on measurement of mental fatigue using speech technology. Phonetics and Speech Sciences, 5(1), 3-10. (송승규.김종열.장준수.권철홍 (2013). 음성기술을 이용한 정신피로 측정에 관한 타당성 연구. 말소리와 음성과학, 5(1), 3-10.)   DOI
11 Kim, J., & Kwon, C. (2014). Measuring correlation between mental fatigues and speech features. Phonetics and Speech Sciences, 6(2), 3-8. (김정인.권철홍 (2014). 정신피로와 음성특징과의 상관관계 측정. 말소리와 음성과학, 6(2), 3-8.)
12 Hwang, Y., & Seong, C. (2008). Comparative study on the acoustic characteristics of the Korean vowel /a/ before and after LMS. Malsori, 67, 33-60. (황연신.성철재 (2008). 후두미세수술 전후 /아/의 음향적 특성 비교. 말소리, 67, 33-60.)
13 Breiman, L., Frieman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression tree. Belmont: Wadsworth.
14 Park, H.. (2007). An acoustic study of phonation types in vowels following consonant clusters in Korean. Malsori, 64, 53-76. (박한상 (2007). 한국어 자음군의 후행모음에 나타난 발성유형의 음향음성학적 연구. 말소리, 64, 53-76.)
15 Hillenbrand, J., & Houde, R. A. (1996). Acoustic correlates of breathy vocal quality: dysphonic voices and continuous speech. Journal of Speech, Language, and Hearing Research, 39, 311-321.   DOI
16 Park, C., Kim, Y., Kim, J., Song, J., & Choi, H. (2011). Data Mining Using R. Seoul: Kyohaksa. (박창이.김용대.김진석.송종우.최호식 (2011). R 을 이용한 데이터 마이닝. 서울: 교학사.)
17 Ko, Y. (2011). The construction methodology of a rule-based expert system using CART-based decision tree method. Journal of Korea Institute of Electronic Communication Science, 6(6), 849-854. (고윤석 (2011). CART 알고리즘 기반의 의사결정트리 기법을 이용한 규칙기반 전문가 시스템 구축 방법론. 한국전자통신학회 논문지, 6(6), 849-854.)
18 Allix, K., Bissyande, T. F., Jerome, Q., Klein, J., State, R., & Traon, Y. L. (2014). Large-scale machine learning-based malware detection: confronting the 10-fold cross validation scheme with reality. Proceedings of the 4th Association for Computing Machinery(ACM) International Conference on Data and Application Security and Privacy (pp. 163-166).
19 Kim, Y., & Choi, K. (2000). Mathematical programming application for clustering problems in conjunction with confusing matrix. Proceedings of 2000 Conference of the Korea Industrial & Systems Engineering (pp. 605-608). (김영민.최경현, (2000). 혼동 행렬을 이용한 클러스터링 문제의 수리 계획적 접근. 대한산업공학회/한국경영과학회 2000 년도 학술대회논문집, 605 -608.)
20 Wen, Z., Zhang, R., & Ramamohanarao, L. (2014). Enabling precision/recall preferences for semi-supervised SVM training. Proceedings of the 23rd Association for Computing Machinery(ACM) International Conference on Information and Knowledge Management (pp. 421-430).