Browse > Article

Small Animal PET Imaging Study of 68Ga-BAPEN  

Kim, Ji-Who (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Lee, Jae-Sung (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Yang, Bo-Yeun (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Kim, Su-Jin (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Kim, Joong-Hyun (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Jeong, Jae-Min (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Lee, Dong-Soo (Department of Nuclear Medicine, Interdisciplinary Program in Radiation Applied Life Science, Seoul National University)
Publication Information
Progress in Medical Physics / v.22, no.4, 2011 , pp. 172-177 More about this Journal
Abstract
The purpose of this study was to analyze $^{68}Ga$-BAPEN dynamic PET image in rat myocardium to evaluate potential of this radiotracer as a perfusion imaging agent. Animal PET/CT scan was done in 9 rats during 120 minutes. Especially we synthesized $^{68}Ga$-BAPEN with kit which is simple and low cost method. PET images showed the in vivo dynamic distribution of $^{68}Ga$-BAPEN in the chest region of rats. Initially $^{68}Ga$-BAPEN PET images showed aorta and liver activities and a few minutes later, $^{68}Ga$-BAPEN moved to myocardium. Regions of interest were drawn on myocardium, liver, lung and blood pool. Time-activity curves showed significant uptake of $^{68}Ga$-BAPEN in myocardium. The contrast ratios of myocardial to blood pool, lung and liver at 60 minutes after injection were 1.66, 2.82 and 0.60. To estimate accurate kinetic parameters, 60 minutes after injection was required to PET scan as myocardium image contrast ratios reached to constant values. As a result, $^{68}Ga$-BAPEN would be suitable radiotracer for PET which can applied to diagnosis of myocardial perfusion diseases after further preclinical and clinical investigations.
Keywords
$^{68}Ga$-BAPEN; Myocardium; PET; Rat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee JS, Lee DS, Ahn JY, et al: Blind separation of cardiac components and extraction of input function from $H_2^{15}O$ dynamic myocardial PET using independent component analysis. J Nucl Med 42:938-943 (2001)
2 EL Fakhri G, Kardan A, Sitek A, et al: Reproducibility and accuracy of quantitative myocardial blood flow assessment with $^{82}Rb$ PET: comparison with $^{13}N-ammonia$ PET. J Nucl Med 50:1062-1071 (2009)   DOI   ScienceOn
3 Nitzsche EU, Choi Y, Czemin J, Hoh CK, Huang SC, Schelbert HR: Noninvasive quantification of myocardial blood flow in humans: a direct comparison of the $[^{13}N]ammonia$ and the $[^{15}O]water$ techniques. Circulation 93:2000-2006 (1996)   DOI   ScienceOn
4 Go RT, Marwick TH, Maclntyre WJ, et al: A prospective comparison of Rubidium-82 PET and Thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J NucI Med 31: 1899-1905 (1990)
5 Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA: Quantification of myocardial blood flow with $^{82}Rb$ dynamic PET imaging. Eur J Nucl Med Mol Imaging 34:1765-1774 (2007)   DOI   ScienceOn
6 Klein R, Renaud JM, Ziadi MC, et al: Intra- and inter- operator repeatability of myocardial blood flow and myocardial flow reserve measurements using Rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 17: 600-616 (2010)   DOI   ScienceOn
7 Carvalho PA, Chiu ML, Kronauge JF, et al: Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. J Nucl Med 33:1516-1522 (1992)
8 Crane P, Laliberté R, Heminway S, et al: Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med 20:20-25 (1993)   DOI   ScienceOn
9 Wang J, Yang CT, Kim YS, et al: $^{64}Cu--Labeled$ triphenylphosphonium and triphenylarsonium cations as highly tumorselective imaging agents. J Med Chem 50:5057-5069 (2007)   DOI   ScienceOn
10 Tsang BW, Mathias CJ, Green MA: A Gallium-68 radiopharmaceutical that is retained in myocardium: $^{68}Gal[(4,6-MeO_2sal)_2BAPEN]^+$. J Nucl Med 34:1127-1131 (1993)
11 Choi Y, Huang SC, Hawkins RA, et al: Quantification of myocardial blood flow using $^{13}N-ammonia$ and PET: comparison of tracer models. J Nucl Med 40:1045-1055 (1999)
12 Schwaiger M, Muzik O: Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 67:35D-43D (1991)   DOI   ScienceOn
13 Higuchi T, Nekolla SG, Huisman MM, et al: A new $^{18}F-labeled$ myocardial PET tracer: myocardial uptake after permanent and transient coronary occlusion in rats. J Nucl Med 49:1715-1722 (2008)   DOI   ScienceOn
14 Yang BY, Jeong JM, Kim YJ, et al: Formulation of $^{68}Ga$ BAPEN kit for myocardial positron emission tomography Imaging and biodistribution study. Nucl Med Biol 37:149-155 (2010)   DOI   ScienceOn
15 Lee JS, Park KS, Lee DS, Lee CW, Chung JK, Lee MC: Development and applications of a software for Functional Image Registration (FIRE). Comput Meth Prog Bio 78:157-164 (2005)   DOI   ScienceOn
16 Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M: Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 34:83-91 (1993)
17 Iida H, Rhodes CG, de Silva R, et al: Myocardial tissue fraction-correction for partial volume effects and measure of tissue viability. J Nucl Med 32:2169-2175 (1991)
18 Croteau E, Benard F, Bentourkia M, Rousseau J, Paquette M, Lecomte R: Quantitative myocardial perfusion and coronary reserve in rats with $^{13}N-ammonia$ and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med 45:1924-1930 (2004)
19 Lee JS, Lee DS, Ahn JY, et al: Generation of parametric image of regional myocardial blood flow using $H_2^{15}O$ dynamic PET and a linear least-squares method. J Nucl Med 46:1687-1695 (2005)
20 Nekolla SG, Reder S, Saraste A, et al: Evaluation of the novel myocardial perfusion positron-emission tomography tracer $^{18}F$-BMS-77158-02. comparison to $^{13}N-ammonia$ and validation with microsphere in a pig model. Circulation 119:2333-2342(2009)   DOI   ScienceOn
21 Degrado TR, Bergmann SR, Ng CK, Raffel DM: Tracer kinetic modeling in nuclear cardiology. J Nucl Cardiol 7:686-700 (2000)   DOI   ScienceOn
22 Camici PG: Positron emission tomography and myocardial imaging. Heart 83:475-480 (2000)   DOI
23 Eisner R, Churchwell A, Noever T, et al: Quantitative analysis of the tomographie Thallium-201 myocardial bullseye display critical role of correcting for patient motion. J Nucl Med 29:92-97 (1988)
24 Hsiao YM, Mathias CJ, Wey SP, Fanwick PE, Green MA: Synthesis and biodistribution of lipophilic and monocationic gallium radiophramceuticals derived from N, N'-bis(3-aminopropyl)- N, N'-dimethylethylenediamine: potential agents for PET myocardial Imaging with $^{68}Ga$. Nucl Med Biol 36:39-45 (2008)
25 Lee JS, Lee DS, Ahn JY, et al: Parametric image of myocardial blood flow generated from dynamic $H_2^{15}O$ PET using factor analysis and cluster analysis. Med Biol Eng Comput 43:678-685 (2005)   DOI   ScienceOn
26 Ahn JY, Lee DS, Lee JS, et al: Quantification of regional myocardial blood flow using dynamic $H_2^{15}O$ PET and factor analysis. J Nucl Med 42:782-787 (2001)