Browse > Article
http://dx.doi.org/10.15435/JILASSKR.2014.19.4.174

Experimental Investigation of Coupling Effects between Particle Size and Temperature on the Thermal Conductivity of Alumina Nanofluids  

Lee, Ji-Hwan (Korea Aerospace University, BK21PLUS Department of Fundamental Technology for Korean Space Launch Vehicle and Space System)
Jang, Seok Pil (Korea Aerospace University, School of Aerospace and Mechanical Engineering)
Lee, Seung-Hyun (Korea Aerospace University, School of Aerospace and Mechanical Engineering)
Park, Yong-Jun (Korea Aerospace University, School of Aerospace and Mechanical Engineering)
Kim, Dong Jin (Korea Aerospace University, School of Aerospace and Mechanical Engineering)
Koo, Jaye (Korea Aerospace University, School of Aerospace and Mechanical Engineering)
Publication Information
Journal of ILASS-Korea / v.19, no.4, 2014 , pp. 174-181 More about this Journal
Abstract
This study investigates the effects of nanoparticle size and temperature on the thermal conductivity enhancement of water-based alumina ($Al_2O_3$) nanofluids, using the centrifuging method and relative centrifugal forces of differing magnitude to produce nanofluids of three different particles without involving any dispersants or surfactants. We determined the coupling dependency in thermal conductivity enhancement relative to nanoparticle size and temperature of the alumina nanofluids and also experimentally showed that the effect of temperature on thermal conductivity is strongly dependent on nanoparticle size. Also, our experimental data presented that the effective medium theory models such as the Maxwell model and Hasselman and Johnson model are not sufficient to explain the thermal conductivity of nanofluids since they cannot account for the temperature- and size-dependent nature of water-based alumina nanofluids.
Keywords
Nanofluids; Thermal Conductivity; Particle Size; Temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Wang, X., Xu, and S. U. S. Choi, "Thermal Conductivity of Nanoparticle-Fluid Mixture", Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, 1999, pp. 474-480.   DOI
2 H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, "Thermal conductivity enhancement of suspensions containing nanosized alumina particles", Journal of Applied Physics, Vol. 91, No. 7, 2002, pp. 4568-4572.   DOI   ScienceOn
3 X. Zhang, H. Gu, and M. Fujii, "Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids", International Journal of Thermophysics, Vol. 27, No. 2, 2006, pp. 569-580.   DOI
4 S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, "Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids", Journal of Heat Transfer, Vol. 125, No. 4, 2003, pp. 567-574.   DOI   ScienceOn
5 C. H. Chon, K. D. Kihm, S. P. Lee, and S. U. S. Choi, "Empirical correlation finding the role of temperature and particle size for nanofluid ($Al_2O_3$) thermal conductivity enhancement," Applied Physics Letters, Vol. 87, No. 15, 2005, p. 153107.   DOI   ScienceOn
6 S. M. S. Murshed, K. C. Leong, and C. Yang, "A Model for Predicting the Effective Thermal Conductivity of Nanoparticle-Fluid Suspensions", International Journal of Nanoscience, Vol. 5, No. 1, 2006, pp. 23-33.   DOI
7 C. H. Li and G. P. Peterson, "The effect of particle size on the effective thermal conductivity of $Al_2O_3$-water nanofluids", Journal of Applied Physics, Vol. 101, No. 4, 2007, p. 044312.   DOI   ScienceOn
8 E. V. Timofeeva, A. N. Gavrilov, J. M. McCloskey, Y. V. Tolmachev, S. Sprunt, L. M. Lopatina, and J. V. Selinger, "Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory", Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, Vol. 76, No. 6, 2007, p. 061203.   DOI
9 H. A. Mintsa, G. Roy, C. T. Nguyen, and D. Doucet, "New temperature dependent thermal conductivity data for water-based nanofluids", International Journal of Thermal Sciences, Vol. 48, No. 2, 2009, pp. 363-371.   DOI   ScienceOn
10 J. Eapen, W. C. Williams, J. Buongiorno, L.-W. Hu, S. Yip, R. Rusconi, and R. Piazza, "Mean-Field Versus Microconvection Effects in Nanofluid Thermal Conduction," Physical Review Letters, Vol. 99, No. 9, 2007, p. 095901.   DOI
11 M. P. Beck, Y. Yuan, P. Warrier, and A. S. Teja, "The effect of particle size on the thermal conductivity of alumina nanofluids", Journal of Nanoparticle Research, Vol. 11, No. 5, 2009, pp. 1129-1136.   DOI
12 J. W. Gao, R. T. Zheng, H. Ohtani, D. S. Zhu, and G. Chen, "Experimental Investigation of Heat Conduction Mechanisms in Nanofluids. Clue on Clustering," Nano Letters, Vol. 9, No. 12, 2009, pp. 4128-4132.   DOI   ScienceOn
13 T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, and H.-G. Hsu, "The effect of alumina/water nanofluid particle size on thermal conductivity", Applied Thermal Engineering, Vol. 30, No. 14-15, 2010, pp. 2213-2218.   DOI   ScienceOn
14 J.-H. Lee, S.-H. Lee, C. J. Choi, S. P. Jang, and S. U. S. Choi, "A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids," International Journal of Micro-Nano Scale Transport, Vol. 1, No. 4, 2010, pp. 269-322.   DOI
15 W. Evans, J. Fish, and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Applied Physics Letters, Vol. 88, No. 9, 2006, p. 093116.   DOI   ScienceOn
16 J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi, and C. J. Choi, "Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of $Al_2O_3$ nanoparticles," International Journal of Heat and Mass Transfer, Vol. 50, No. 11-12, 2008, pp. 2651-2656.
17 D. P. H. Hasselman and L. F. Johnson, "Effective thermal conductivity of composites with interfacial thermal barrier resistance", Journal of Composite Materials, Vol. 21, No. 6, 1987, pp. 508-515.   DOI   ScienceOn
18 Y. Nagasaka and A. Nagashima, "Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method," Journal of Physics E: Scientific Instruments, Vol. 14, No. 12, 1981, pp. 1435-1440.   DOI   ScienceOn
19 A. Einstein, "Investigation on the Theory of Brownian Movement", Dover, New York, 1956.
20 J. C. Maxwell, "A Treatise on Electricity and Magnetism", 1st Edition, Vol. 1, Clarendon Press, Oxford, U.K., 1873, pp. 360-366.
21 O. M. Wilson, X. Hu, D. G. Cahill, and P. V. Braun, "Colloidal metal particles as probes of nanoscale thermal transport in fluids", Physical Review B: Condensed Matter and Materials Physics, Vol. 66, No. 22, 2002, p. 224301.   DOI   ScienceOn
22 S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids", Applied Physics Letters, Vol. 84, No. 21, 2004, pp. 4316-4318.   DOI   ScienceOn
23 J. Koo and C. Kleinstreuer, "A new thermal conductivity model for nanofluids", Journal of Nanoparticle Research, Vol. 6, No. 6, 2004, pp. 577-588.   DOI   ScienceOn
24 R. Prasher, P. Bhattacharya, and P. E. Phelan, "Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)", Physical Review Letters, Vol. 94, No. 2, 2005, p. 025901.   DOI