Browse > Article
http://dx.doi.org/10.20910/JASE.2022.16.6.90

Thermal Performance Test of the On-Board Blackbody System in the orbital environment for Non-Uniformity Correction of an Infrared Sensor  

Pil-Gyeong, Choi (Hanwha Systems)
Hye-In, Kim (Department of Aerospace Engineering, Chosun University)
Hyun-Ung, Oh (Department of Aerospace Engineering, Chosun University)
Byung-Cheol, Yoo (Hanwha Systems)
Kyoung-Muk, Lee (Hanwha Systems)
Jin-Suk, Hong (Hanwha Systems)
Publication Information
Journal of Aerospace System Engineering / v.16, no.6, 2022 , pp. 90-98 More about this Journal
Abstract
The output of an infrared (IR) sensor mounted on an EO/IR payload is known to change during a mission period in an orbital environment. As it is required to calibrate the output of the IR sensor periodically to obtain high-quality images, an on-board black body system is mounted on the payload. All systems operating in the space environment require performance tests on ground to verify the target performance in the orbital environment. Therefore, it is also required to test the black body system to verify the performance of the surface temperature uniformity and the estimated representative temperature error within the target temperature range in the operating environment. In this study, calibration of the estimated representative temperature error and verification of the thermal performance of the black body system were conducted by performed a performance test in the thermal vacuum chamber applying deep space radiation cooling effect of an orbital environment.
Keywords
BlackBody; Infrared Sensor; Non-uniformity; Temperature Accuracy; Thermal Vacuum Test; Deep Space Radiation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sheng, Y., Dun, X., Jin, W., Zhou, F., Wang, X, Mi, F., & Xiao, S., "The on-orbit non-uniformity correction method with modulated internal calibration sources for infrared remote sensing systems," Remote Sensing, Vol. 10, No. 6, pp. 830, 2018.
2 Miao, L. I., Xu, Q., Zhang, M. T., Sun, D. X., & Liu, Y. N., "Real-time implementation of multi-point nonuniformity correction for IRFPA based on FPGA," International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Infrared Imaging and Applications, Vol. 7383, pp. 73830F, 2009.
3 Calik, R. C., Tunali, E., Ercan, B., & Oz, S., "A Study on Calibration Methods for Infrared Focal Plane Array Cameras," VISIGRAPP (4: VISAPP), pp. 219-226, 2018.
4 Lee, K. M., & Oh, H. U., "Calibration Mirror Mechanism with Fail-safe Function," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 39, No. 7, pp. 682-687, 2011.
5 Olschewski, F., Ebersoldt, A., Friedl-Vallon, F., Gutschwager, B., Hollandt, J., Kleinert, A., ... & Koppmann, R., "The in-flight blackbody calibration system for the GLORIA interferometer on board an airborne research platform," Atmospheric Measurement Techniques, Vol. 6, No. 11, pp. 3067-3082, 2013.
6 Monte, C., Gutschwager, B., Adibekyan, A., Kehrt, M., Ebersoldt, A., Olschewski, F., & Hollandt, J., "Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer," Atmospheric Measurement Techniques, Vol. 7, No. 1, pp. 13-27, 2014.   DOI
7 Koppmann, R., Olschewski, F., Steffens, P., Rolf, C., Preusse, P., Ebersoldt, A., ... & Monte, C., "An in-flight blackbody calibration source for the GLORIA interferometer onboard an airborne research platform," AIP Conference Proceedings, Vol. 1531, No. 1. American Institute of Physics, pp. 332-335, May 2013.
8 Shin, S., "Black body design and verification for non-uniformity correction of imaging sensor and uncertainty analysis," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 41, No. 3, pp. 240-245, 2013.
9 Oh, H. U., Shin, S. M., Hong, J. S., & Lee, M. K., "On-Board Black Body Thermal Design and On-Orbit Thermal Analysis for Non-Uniformity Correction of Space Imagers," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 38, No. 10, pp. 1020-1025, 2010.
10 Oh, H. U., & Shin, S., "Numerical study on the thermal design of on-board blackbody," Aerospace Science and Technology, Vol. 18, No. 1, pp. 25-34, 2012.   DOI
11 Kim, H. I., Choi, P. G., Jo, M. S., & Oh, H. U., "Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration," Journal of Aerospace System Engineering, Vol. 14, No. 3, pp. 42-50, 2020.
12 Hong, J., Choi, P. G., Jo, M., Lee, K., Yoon, J., & Lee, E. S., "Design evaluation of the tilt mirror and groove feature for flat thermal image of the blackbody unit," Infrared, Millimeter-Wave, and Terahertz Technologies VI, Vol. 11196, pp. 10, November 2019.
13 Thermal Desktop User's Guide, Ver. 5.8, Network Analysis Associates, Tempe, Az, 2006.
14 SINDA/FLUINT User's Guide, Ver. 5.8, Network Analysis Associates, Tempe, Az, 2006.