Browse > Article
http://dx.doi.org/10.1016/j.net.2022.03.031

Potential of biochar reinforced concrete as neutron shielding material  

Martellucci, Riccardo (Department of Applied Science and Technology, Politecnico di Torino)
Torsello, Daniele (Department of Applied Science and Technology, Politecnico di Torino)
Publication Information
Nuclear Engineering and Technology / v.54, no.9, 2022 , pp. 3448-3451 More about this Journal
Abstract
Biochar is a novel carbon based material derived from waste that shows promising properties for several applications. In this paper we investigate its potential use as a low cost, greener alternative to commonly used aggregates employed to enhance the neutron shielding performance of concrete. Monte Carlo simulations are performed with the PHITS code to estimate the neutron attenuation of blank and biochar-reinforced concrete exposed to high energy neutrons. We find that the shielding performance of concrete with 15% biochar is comparable with commonly used materials such as Boron Carbide at 20% and exceeds that of Basalt fibers with the same concentration, making these composites an interesting greener alternative to current solutions. A combination of biochar and heavier fillers also show extremely promising performance.
Keywords
Biochar; Neutron shielding; Composites; Monte Carlo simulations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.I. Al-Wabel, A. Al-Omran, A.H. El-Naggar, M. Nadeem, A.R. Usman, Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes, Bioresour. Technol. 131 (2013) 374-379, https://doi.org/10.1016/j.biortech.2012.12.165. URL, https://www. sciencedirect.com/science/article/pii/S0960852412020238.   DOI
2 G. Lv, S. Wu, G. Yang, J. Chen, Y. Liu, F. Kong, Comparative study of pyrolysis behaviors of corn stalk and its three components, J. Anal. Appl. Pyrol. 104 (2013) 185-193, https://doi.org/10.1016/j.jaap.2013.08.005. URL, https://www.sciencedirect.com/science/article/pii/S0165237013001861.   DOI
3 A. Suzuki, T. Iida, J. Moriizumi, Y. Sakuma, J. Takada, K. Yamasaki, T. Yoshimoto, Trace elements with large activation cross section in concrete materials in Japan, J. Nucl. Sci. Technol. 38 (7) (2001) 542-550, https://doi.org/10.1080/18811248.2001.9715065.   DOI
4 E. Zorla, C. Ipbuker, A. Biland, M. Kiisk, S. Kovaljov, A.H. Tkaczyk, V. Gulik, Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron, Nucl. Eng. Des. 313 (2017) 306-318, https://doi.org/10.1016/j.nucengdes.2016.12.029. URL, https://www.sciencedirect.com/science/article/pii/S0029549316305258.   DOI
5 D.A. Tumminelli, Proprieta nutritive del biochar e risposte delle colture prodotte stato dell'arte e sperimentazione, Ph.D. thesis, Universita' degli Studi di Palermo, 2012.
6 M. Vochozka, A. Marouskova, J. V achal, J. Strakov a, Biochar pricing hampers biochar farming, Clean Technol. Environ. Policy 18 (4) (2016) 1225-1231.   DOI
7 D. Torsello, G. Ghigo, M. Giorcelli, M. Bartoli, M. Rovere, A. Tagliaferro, Tuning the microwave electromagnetic properties of biochar-based composites by annealing, Carbon Trends 4 (2021), 100062, https://doi.org/10.1016/j.cartre.2021.100062. URL, https://www.sciencedirect.com/science/article/pii/S2667056921000390.   DOI
8 M. Bartoli, M. Giorcelli, P. Jagdale, M. Rovere, A. Tagliaferro, A review of nonsoil biochar applications, Materials 13 (2). doi:10.3390/ma13020261. URL https://www.mdpi.com/1996-1944/13/2/261.   DOI
9 K. Weber, P. Quicker, Properties of biochar, Fuel 217 (2018) 240-261, https://doi.org/10.1016/j.fuel.2017.12.054. URL, https://www.sciencedirect.com/science/article/pii/S0016236117316216.   DOI
10 D. Sariyer, R. Kucer, N. Kucer, Neutron shielding properties of concretes containing boron carbide and ferro e boron, world Conference on Technology, Innovation and Entrepreneurship, Procedia - Social and Behavioral Sciences 195 (2015) 1752-1756, https://doi.org/10.1016/j.sbspro.2015.06.320. URL, https://www.sciencedirect.com/science/article/pii/S1877042815037994.   DOI
11 E.-S.A. Waly, M.A. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials, Ann. Nucl. Energy 85 (2015) 306-310, https://doi.org/10.1016/j.anucene.2015.05.011. URL, https://www.sciencedirect.com/science/article/pii/S0306454915002698.   DOI
12 S. Gupta, H.W. Kua, S.D. Pang, Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature, Construct. Build. Mater. 234 (2020), 117338, https://doi.org/10.1016/j.conbuildmat.2019.117338. URL, https://www.sciencedirect.com/science/article/pii/S0950061819327904.   DOI
13 N. Nakao, T. Sanami, T. Kajimoto, E. Iliopoulou, R. Froeschl, M. Brugger, S. Roesler, A. Infantino, Attenuation length of high energy neutrons through a thick concrete shield measured by activation detectors at charm, J. Nucl. Sci. Technol. 57 (9) (2020) 1022-1034, https://doi.org/10.1080/00223131.2020.1751740.   DOI
14 A. Rowcliffe, L. Garrison, Y. Yamamoto, L. Tan, Y. Katoh, Materials challenges for the fusion nuclear science facility, special Issue: FESS-FNSF Study, Fusion Eng. Des. 135 (2018) 290-301, https://doi.org/10.1016/ j.fusengdes.2017.07.012. URL, https://www.sciencedirect.com/science/article/pii/S0920379617307524.   DOI
15 S. Sohi, E. Krull, E. Lopez-Capel, R. Bol, Chapter 2 - a review of biochar and its use and function in soil, in: Advances in Agronomy, Vol. 105 of Advances in Agronomy, Academic Press, 2010, pp. 47-82, https://doi.org/10.1016/S0065-2113(10)05002-9. URL, https://www.sciencedirect.com/science/article/pii/S0065211310050029.   DOI
16 L. Xiao, L. Feng, G. Yuan, J. Wei, Low-cost field production of biochars and their properties, Environ. Geochem. Health 42 (6) (2020) 1569-1578.   DOI
17 A. Akhtar, A.K. Sarmah, Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties, Sci. Total Environ. 616-617 (2018) 408-416, https://doi.org/10.1016/j.scitotenv.2017.10.319. URL, https://www.sciencedirect.com/science/article/pii/S0048969717330371.   DOI
18 D. Cuthbertson, U. Berardi, C. Briens, F. Berruti, Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties, Biomass Bioenergy 120 (2019) 77-83, https://doi.org/10.1016/j.biombioe.2018.11.007. URL, https://www.sciencedirect.com/science/article/pii/S0961953418303039.   DOI
19 A. Makarious, I. Bashter, A. El-Sayed Abdo, M. Samir Abdel Azim, W. Kansouh, On the utilization of heavy concrete for radiation shielding, Ann. Nucl. Energy 23 (3) (1996) 195-206, https://doi.org/10.1016/0306-4549(95)00021-1. URL, https://www.sciencedirect.com/science/article/pii/0306454995000211.   DOI
20 T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. ichiro Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, N. Shigyo, L. Sihver, K. Niita, Features of particle and heavy ion transport code system (phits) version 3.02, J. Nucl. Sci. Technol. 55 (6) (2018) 684-690, https://doi.org/10.1080/00223131.2017.1419890.   DOI
21 I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (17) (1997) 1389-1401, https://doi.org/10.1016/S0306-4549(97)00003-0.   DOI