Browse > Article
http://dx.doi.org/10.1016/j.net.2022.01.029

Comparative optimization of Be/Zr(BH4)4 and Be/Be(BH4)2 as 252Cf source shielding assemblies: Effect on landmine detection by neutron backscattering technique  

Elsheikh, Nassreldeen A.A. (Al-Baha University, College of Science & Arts, Al-Mikhwah, Department of Physics)
Publication Information
Nuclear Engineering and Technology / v.54, no.7, 2022 , pp. 2614-2624 More about this Journal
Abstract
Monte Carlo simulations were used to model a portable Neutron backscattering (NBT) sensor suitable for detecting plastic anti-personnel mines (APMs) buried in dry and moist soils. The model consists of a 100 MBq 252Cf source encapsulated in a neutron reflector/shield assembly and centered between two 3He detectors. Multi-parameter optimization was performed to investigate the efficiency of Be/Zr(BH4)4 and Be/Be(BH4)2 assemblies in terms of increasing the signal-to-background (S/B) ratio and reducing the total dose equivalent rate. The MCNP results showed that 2 cm Be/3 cm Zr(BH4)4 and 2 cm Be/3 cm Be(BH4)2 are the optimal configurations. However, due to portability requirements and abundance of Be, the 252Cf-2 cm Be/3 cm Be(BH4)2 NBT model was selected to scan the center of APM buried 3 cm deep in dry and moist soils. The selected NBT model has positively identified the APM with a S/B ratio of 886 for dry soils of 1 wt% hydrogen content and with S/B ratios of 615, 398, 86, and 12 for the moist soils containing 4, 6, 10, and 14 wt% hydrogen, respectively. The total dose equivalent rate reached 0.0031 mSv/h, suggesting a work load of 8 h/day for 806 days within the permissible annual dose limit of 20 mSv.
Keywords
Monte Carlo simulations; Neutron backscattering; Landmine detection; Metal borohydrides; $^{252}Cf$ neutron source;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P.G. Marais, W.B.D.E.V. Smit, Effect of bulk density and of hydrogen in forms other than free water on the calibration curve of the neutron moisture meter, South Afr. J. Agric. Sci. 5 (1962) 225-238.
2 F. Piscitelli, G. Mauri, A. Laloni, R. Hall-Wilton, Verification of He-3 proportional counters' fast neutron sensitivity through a comparison with He-4 detectors He-3 and He-4 proportional counters' fast neutron sensitivity and evaluation of the cosmic neutron fluxes at ESS, Eur. Phys. J. Plus 135 (2020) 577.   DOI
3 ISO 230-7, Test Code for Machine Tools-Part7: Geometric Accuracy of Axes of Rotation, 2015.
4 M. Tanveer, L. Wang, Potential targets to reduce beryllium toxicity in plants: a review, Plant Physiol. Biochem. 139 (2019) 691-696.   DOI
5 Shanghai metals market (SMM), November. https://www.metal.com/, 2021.
6 M.J. Fayer, G.W. Gee, Neutron Scattering, Encyclopedia of Soils in the Environment, 2005, pp. 6-12.
7 E.L. Greacen, G. Schrale, The effect of bulk density on neutron meter calibration, Aust. J. Soil Res. 14 (1976) 159-169.   DOI
8 K.A. Guzman-Garcia, H.R. Vega-Carrillo, E. Gallego, J.A. Gonzalez-Gonzalez, A. Lorente, S. Ibanez-Fernandez, 10B+ZnS(Ag) as an alternative to 3He-based detectors for radiation portal monitors, EPJ Web Conf. 253 (2017), 07008.
9 B.C. Anderson, K.E. Holbert, H. Bowler, Design, Construction, and Modeling of a 252Cf Neutron Irradiator, Science and Technology of Nuclear Installations, 2016, p. 9012747.
10 J. Scherzinger, J.R.M. Annand, G. Davatz, K.G. Fissum, U. Gendottid, R. HallWilton, A. Rosborg, E. H akansson, R. Jebali, K. Kanakib, M. Lundin, B. Nilsson, H. Svensson, Tagging fast neutrons from an 241Am/9Be source, Appl. Radiat. Isot. 98 (2015) 74-79.   DOI
11 V.R. Bom, C.P. Datema, C.W.E. Van Ejik, The status of the delft university neutron backscatter landmine detector (DUNBLAD), Appl. Radiat. Isot. 61 (2004) 21-25.   DOI
12 M.M. Bournea, C. Mussi, E.C. Miller, S.D. Clarke, S.A. Pozzi, A. Gueorguiev, Characterization of the CLYC detector for neutron and photon detection, Nucl. Instrum. Methods Phys. Res. 736 (2014) 124-127.   DOI
13 H. Killers, The Global Land-Mine Crisis, Report Released by the US Department of State, Bureau of Political-Military Affairs, Office of Humanitarian De-mining Programs, Washington, DC, 1998.
14 G. Vourvopoulos, P.C. Womble, Pulsed fast/thermal neutron analysis: a technique for explosives detection, Talanta 54 (2001) 459-468.   DOI
15 G. Vourvopoulos, R.A. Sullivan, Evaluation of PELAN as a landmine confirmation sensor, Proc. SPIE 6217 (2006) 1-6, 62171P.
16 S.A.I. Corporation, an Advanced ESTCP PELAN System for Surface and NearSurface UXO Discrimination, ESTCP Project Number MM-200503, 2009.
17 Z.D. Whetstone, K.J. Kearfott, A review of conventional explosives detection using active neutron interrogation, J. Radioanal. Nucl. Chem. 301 (2014) 629-639.   DOI
18 T.W. Crane, M.P. Baker, Neutron detectors. Chap. 13, passive nondestructive assay of nuclear materials, in: D. Reilly, et al. (Eds.), Technical Report NUREG/CR-5550; LA-UR-90-732, Los Alamos National Laboratory, NM, USA, 1991.
19 D.R. Ochbelagh, Comparison of 3He and BF3neutron detectors used to detect hydrogenous material buried in soil, Radiat. Phys. Chem. 81 (2012) 379-382.   DOI
20 A.A.E. Nassreldeen, Characterization of (252Cf-ZrH2) Monte Carlo model for detection of nitrogen and chlorine by thermal neutron-capture PGNAA, Radiat. Phys. Chem. 188 (2021) 109591.   DOI
21 F.D. Brooks, M. Drosg, A. Buffler, M.S. Allie, Detection of anti-personnel landmines by neutron scattering and attenuation, Appl. Radiat. Isot. 61 (2004) 27-34.   DOI
22 Obhadas, D. Sudac, K. Nad, V. Valkovic, G. Nebbia, G. Viesti, The soil moisture and its relevance to landmine detection by neutron backscattering technique, Nucl. Instrum. Methods B 213 (2004) 445-451.   DOI
23 N.A.A. Elsheikh, Monte Carlo modelling of a neutron-induced gamma-ray sensor for landmine or explosive detection, J. Radiat. Res. Appl. Sci. 11 (2018) 403-407.   DOI
24 R.V. Griffith, J. Palfalvi, U. Madhvanath, Compendium of Neutron Spectra and Detector Responses for Radiation Protection Purposes, IAEA Technical Report Ser. No.318, IAEA, Vienna, 1990.
25 J.C.G. Walker, Evolution of the Atmosphere, 1977.
26 G.F. Knoll, Radiation Detection and Measurement, second ed., Wiley, New York, 1989.
27 National nuclear data center, Brookhaven National laboratory. https://www.nndc.bnl.gov/, 2008.
28 I. Elagib, A.M. Artoli, F. Habbani, M. Badawi, Monte Carlo simulation of Pu-Be, Am-Be and Cf-252 neutrons backscattering from buried explosives in dry soil, in: International Conference on Computer Applications Technology (ICCAT), 2013, pp. 1-4.
29 K.J.R. Rosman, P.D.P. Taylor, IUPAC subcommittee for isotopic abundance measurements, Pure Appl. Chem. 71 (1999) 1593-1607.   DOI
30 N. Elsheikh, G. Viesti, I. ElAgib, F. Habbani, On the use of a (252Cf-3He) assembly for landmine detection by the neutron back-scattering method, Appl. Radiat. Isot. 70 (2012) 643-649.   DOI
31 V. Bom, M.A. Ali, C.W.E. van Eijk, Land mine detection with neutron back scattering imaging using a neutron generator, EEE Trans. Nucl. Sci. 53 (2006) 356-360.   DOI
32 A.A.E. Nassreldeen, Multi-parameter optimization of a (3He-252Cf-3He) neutron backscattering sensor for landmine detection, J. Radiat. Res. Appl. Sci. 10 (2017) 122-127.   DOI
33 A.A.E. Nassreldeen, Shielding capabilities of Mg (BH4)2, TiH2, C2H4-25%B and C2H4 as 252Cf neutron source shielding containers: Monte Carlo simulations, Afr. Rev. Phys. 15 (2020), 0013.
34 F.A. Smith, A Primer in Applied Radiation Physics, Singapore: World Scientific Publishing Co.Pte.Ltd, Po Box 128, Farrer Road, Singapore, 2000, p. 912805.
35 V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy 64 (2014) 301-310.   DOI
36 X-5 Monte Carlo Team, MCNP- a General Monte Carlo N-Particle Transport Code: Overview and Theory, vol. 5, Los Alamos National Laboratory, 2003. Revised 6/30/04).
37 T. Dhliwayo, Development of advanced shield systems for fast neutrons, Int. Nucl. Saf. J. 3 (2014) 49-53.
38 M.I. Sayyed, O. Agar, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag based alloys, Nucl. Eng. Technol. 51 (2019) 853-859.   DOI
39 T.P. Lou, Compact D-D/d-T Neutron Generators and Their Applications, A Dissertation Submitted in Partial Satisfaction of the Requirements for the Degree of Doctor of Philosophy, University Of California, Berkeley, 2003.
40 K. Zeitelhack, Search for alternative techniques to helium-3 based detectors for neutron scattering applications, Sci. Rev. 23 (2012) 10-13.
41 T.E. Valentine, MCNP-DSP Users Manual, Oak Ridge National Laboratory, 2001. ORNL/TM-13334/2.
42 B. Kiraly, L. Olah, J. Csikai, Neutron-based techniques for detection of explosives and drugs, Radiat. Phys. Chem. 61 (2001) 781-784.   DOI
43 T. Hayashi, K. Tobita, Y. Nakamori, S. Orimo, Advanced neutron shielding material using zirconium borohydride and zirconium hydride, J. Nucl. Mater. (2009) 386-388.
44 F.D. Brooks, M. Drosg, The HYDAD-D anti-personnel landmine detector, Appl. Radiat. Isot. 63 (2005) 565-574.   DOI
45 R. Khabaz, Assessment of gamma-rays generated by the spontaneous fission source 252Cf using a Monte Carlo method, Ann. Nucl. Energy 46 (2012) 76-80.   DOI
46 E.M.A. Hussein, E.J. Waller, Landmine detection: the problem and the challenge, Appl. Radiat. Isot. 53 (2000) 557-563.   DOI
47 C.P. Datema, V.R. Bom, C.W.E. Van Eijk, Landmine detection with the neutron backscattering method, IEEE Nucl. Sci. Conf. Rec. 1 (2001) 5111-5114.
48 J. Csikai, R. Doczi, B. Kiraly, Investigations on landmine detection by neutron-based techniques, Appl. Radiat. Isot. 61 (2004) 11-20.   DOI
49 A.A.E. Nassreldeen, Gamma-ray and neutron shielding features for some fast neutron moderators of interest in 252Cf-based boron neutron capture therapy, Appl. Radiat. Isot. 156 (2020) 109012.   DOI
50 F.D. Brooks, M. Drosg, The HYDAD-D antipersonnel landmine detector, Appl. Radiat. Isot. 63 (2005) 565-574.   DOI
51 M. Asnal, T. Liamsuwan, T. Onjun, An evaluation on the design of beam shaping assembly based on the D-T reaction for BNCT, J. Phys. Conf. 611 (2015), 012031.
52 C.P. Datema, V.R. Bom, C.W.E. Van Eijk, Experimental results and Monte Carlo simulations of a landmine localization device using the neutron backscattering method, Nucl. Instrum. Methods 488 (2002) 441-450.   DOI
53 S.F. Masoudi, M. Ghashami, D-T neutron generators as a feasibility tool for landmine detection based on neutron backscattering method, Ann. Nucl. Energy 65 (2014) 441-445.   DOI
54 G. Mauri, F. Messi, K. Kanaki, R. Hall-Wilton, F. Piscitelli, Fast neutron sensitivity for 3He detectors and comparison with Boron-10 based neutron detectors, EPJ Tech. Instrum. 6 (2019) 3.   DOI
55 S. Ghosh, A. Sharma, G. Talukder, Zirconium: an abnormal trace element in biology, Biol. Trace Elem. Res. 35 (1992) 247-271.   DOI
56 E. Dian, K. Kanaki, R.J. Hall-Wilton, P. Zagyvai, Sz Czifrus, Neutron activation and prompt gamma intensity in Ar/CO2-flled neutron detectors at the European Spallation Source, Appl. Radiat. Isot. 128 (2017) 275-786.   DOI
57 J.G. Fantidis, Comparison of different geometric configurations and materials for neutron radiography purposes based on a 241Am/Be neutron source, J. Taibah Univ. Sci. 6 (2017) 1214-1220.   DOI