Browse > Article
http://dx.doi.org/10.1016/j.net.2021.11.020

On the intra-granular behaviour of a cocktail of inert gases in oxide nuclear fuel: Methodological recommendation for accelerated experimental investigation  

Romano, M. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Pizzocri, D. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Luzzi, L. (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1929-1934 More about this Journal
Abstract
Besides recent progresses in the physics-based modelling of fission gas and helium behaviour, the scarcity of experimental data concerning their combined behaviour (i.e., cocktail) hinders further model developments. For this reason, in this work, we propose a modelling methodology aimed at providing recommendations for accelerated experimental investigations. By exploring a wide range of annealing temperatures and cocktail compositions with a physics-based modelling approach we identify the most interesting conditions to be targeted by future experiments. To corroborate the recommendations arising from the proposed methodology, we include a sensitivity analysis quantifying the impact of the model parameters on fission gas and helium release, in conditions representative of high and low burnup.
Keywords
Helium behaviour; Fission gas behaviour; SCIANTIX; Design of experiment; Inert gas cocktail;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster, M. Groos, Thermal treatment of uranium oxide irradiated in pressurized water reactor: swelling and release of fission gases, J. Nucl. Mater. 255 (1998) 85-91, https://doi.org/10.1016/S0022-3115(98)00039-7.   DOI
2 Hj. Matzke, Gas release mechanisms in UO2 - a critical review, Radiat. Eff. 53 (1980) 219-242, https://doi.org/10.1080/00337578008207118.   DOI
3 P. Van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412, https://doi.org/10.1016/j.jnucmat.2018.12.037.   DOI
4 J.P. Hiernaut, T. Wiss, V.V. Rondinella, J.Y. Colle, A. Sasahara, T. Sonoda, R.J.M. Konings, Specific low temperature release of 131Xe from irradiated MOX fuel, J. Nucl. Mater. 392 (2009) 434-438, https://doi.org/10.1016/j.jnucmat.2009.04.002.   DOI
5 D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel, J. Nucl. Mater. 502 (2018) 323-330.   DOI
6 D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX code, Online Repos. (n.d.), https://gitlab.com/poliminrg/sciantix. (Accessed 4 October 2019).
7 D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - a review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (2006) 94-109, https://doi.org/10.1016/j.jnucmat.2006.03.010.   DOI
8 Z. Talip, T. Wiss, E.A. Maugeri, J.Y. Colle, P.E. Raison, E. Gilabert, M. Ernstberger, D. Staicu, R.J.M. Konings, Helium behaviour in stoichiometric and hyperstoichiometric UO2, J. Eur. Ceram. Soc. 34 (2014) 1265-1277, https://doi.org/10.1016/j.jeurceramsoc.2013.11.032.   DOI
9 L. Luzzi, L. Cognini, D. Pizzocri, T. Barani, G. Pastore, A. Schubert, T. Wiss, P. Van Uffelen, Helium diffusivity in oxide nuclear fuel: critical data analysis and new correlations, Nucl. Eng. Des. 330 (2018) 265-271, https://doi.org/10.1016/j.nucengdes.2018.01.044.   DOI
10 H. Liu, Carnahan-Starling type equations of state for stable hard disk and hard sphere fluids, Mol. Phys. 119 (2021), https://doi.org/10.1080/00268976.2021.1905897.   DOI
11 G. Pastore, L.P. Swiler, J.D. Hales, S.R. Novascone, D.M. Perez, B.W. Spencer, L. Luzzi, P. Van Uffelen, R.L. Williamson, Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater. 456 (2015) 398-408, https://doi.org/10.1016/j.jnucmat.2014.09.077.   DOI
12 L. Cognini, D. Pizzocri, T. Barani, P. Van Uffelen, A. Schubert, T. Wiss, L. Luzzi, Helium solubility in oxide nuclear fuel: derivation of new correlations for Henry's constant, Nucl. Eng. Des. 340 (2018) 240-244, https://doi.org/10.1016/j.nucengdes.2018.09.024.   DOI
13 Z. Talip, T. Wiss, V. Di Marcello, A. Janssen, J.Y. Colle, P. Van Uffelen, P. Raison, R.J.M. Konings, Thermal diffusion of helium in 238Pu-doped UO2, J. Nucl. Mater. 445 (2014) 117-127, https://doi.org/10.1016/j.jnucmat.2013.10.066.   DOI
14 A.T. Motta, D.R. Olander, Light Water Reactor Materials, first ed., vol. I, Fundamentals, American Nuclear Society Scientific Publications, 2017.
15 D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (2020) 152042.   DOI
16 J. Rest, M.W.D. Cooper, J. Spino, J.A. Turnbull, P. Van Uffelen, C.T. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345.   DOI
17 G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis, Nucl. Eng. Des. 256 (2013) 75-86, https://doi.org/10.1016/j.nucengdes.2012.12.002.   DOI
18 J. Rest, A. Zawadski, FASTGRASS : A Mechanistic Model for the Prediction of Xe, I, Cs, Te, Ba, and Sr Release from Nuclear Fuel under Normal and SevereAccident Conditions, n.d.
19 G. Jomard, C. Struzik, A. Boulore, P. Mailhe, V. Auret, R. Largenton, CARACAS : an industrial model for the description of fission gas behavior in LWR-UO2 fuel, in: World React. Fuel Perform. Meet., Sendai, Japan, 2014, pp. 14-17.
20 S. Kashibe, K. Une, K. Nogita, Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6-83 GWd/t, J. Nucl. Mater. 206 (1993) 22-34.   DOI
21 G. Martin, P. Garcia, C. Sabathier, G. Carlot, T. Sauvage, P. Desgardin, C. Raepsaet, H. Khodja, Helium release in uranium dioxide in relation to grain boundaries and free surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 2133-2137, https://doi.org/10.1016/j.nimb.2010.02.064.   DOI
22 J.-P. Hiernaut, T. Wiss, J.-Y. Colle, H. Thiele, C.T. Walker, W. Goll, R.J.M. Konings, Fission product release and microstructure changes during laboratory annealing of a very high burn-up fuel specimen, J. Nucl. Mater. 377 (2008) 313-324, https://doi.org/10.1016/J.JNUCMAT.2008.03.006.   DOI
23 D. Pizzocri, G. Pastore, T. Barani, A. Magni, L. Luzzi, P. Van Uffelen, S.A. Pitts, A. Alfonsi, J.D. Hales, A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools, J. Nucl. Mater. 502 (2018) 323-330, https://doi.org/10.1016/j.jnucmat.2018.02.024.   DOI
24 L. Van Brutzel, A. Chartier, A new equation of state for helium nanobubbles embedded in UO2 matrix calculated via molucelar dynamics simulations, J. Nucl. Mater. 518 (2019) 431-439.   DOI
25 J. Turnbull, R. White, C. Wise, The diffusion coefficient for fission gas atoms in uranium dioxide, in: Proc. A Tech. Comm. Meet. Organ. by Int. at, . Energy Agency Held Preston, 1989, pp. 18-22. Sept. 1988.
26 P. Sung, Equilibrium Solubility and Diffusivity of Helium in Single-Crystal Uranium Dioxide, PhD Thesis, Univ, Washingt., 1967.
27 F.S. Ham, Theory of diffusion-limited precipitation, J. Phys. Chem. Solid. 6 (1958) 335-351.   DOI
28 T. Kogai, Modelling of fission gas release and gaseous swelling of light water reactor fuels, J. Nucl. Mater. 244 (1997) 131-140, https://doi.org/10.1016/S0022-3115(96)00731-3.   DOI
29 P. Botazzoli, Helium Production and Behaviour in LWR Oxide Nuclear Fuels, PhD Thesis, Politec. Di Milano, Italy, 2011.
30 L. Cognini, A. Cechet, T. Barani, D. Pizzocri, P. Van Uffelen, L. Luzzi, Towards a physics-based description of intra-granular helium behaviour in oxide fuel for application in fuel performance codes, Nucl. Eng. Technol. 53 (2021) 562-571.   DOI
31 M.S. Veshchunov, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, R. Dubourg, G. Nicaise, Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2006) 179-200, https://doi.org/10.1016/j.nucengdes.2005.08.006.   DOI
32 L. Noirot, MARGARET: a comprehensive code for the description of fission gas behavior, Nucl. Eng. Des. 241 (2011) 2099-2118, https://doi.org/10.1016/j.nucengdes.2011.03.044.   DOI
33 R.J. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater. 325 (2004) 61-77, https://doi.org/10.1016/j.jnucmat.2003.10.008.   DOI
34 E. Maugeri, T. Wiss, J.P. Hiernaut, K. Desai, C. Thiriet, V.V. Rondinella, J.Y. Colle, R.J.M. Konings, Helium solubility and behaviour in uranium dioxide, J. Nucl. Mater. 385 (2009) 461-466, https://doi.org/10.1016/j.jnucmat.2008.12.033.   DOI