Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.032

Overview of CSNS tantalum cladded tungsten solid Target-1 and Target-2  

Wei, Shaohong (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Zhang, Ruiqiang (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Ji, Quan (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Li, Changfeng (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Zhou, Bin (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Lu, Youlian (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Xu, Jun (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Zhou, Ke (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Zhao, Chongguang (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
He, Ning (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Yin, Wen (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Liang, Tianjiao (Institute of High Energy Physics, Chinese Academy of Sciences (CAS))
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1535-1540 More about this Journal
Abstract
A solid tungsten target was used at the China Spallation Neutron Source (CSNS) with 100 kW proton beam power. To improve the lifetime, hot isostatic pressing (HIP) process was selected to bond tantalum cladding with tungsten plates. Radioactive isotope 182Ta, an activation product of tantalum, was found in the cooling water after a period of operation, however, no radioactive isotopes of 187W was found, which shows the tantalum layer remained mostly intact. The CSNS Target-1 had been operating safely for three years and was replaced by Target-2 in August 2020.
Keywords
Spallation target; Target operation; Tantalum cladded tungsten; Hot isostatic pressure; Spallation products;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.W. Thomason, The ISIS spallation neutron and muon source-the first thirty-three years, Nucl. Instrum. Methods Phys. Res. A. 917 (2019) 61-67.   DOI
2 T. McManamy, A. Crabtree, et al., Overview of the SNS target system testing and initial beam operation experience, J. Nucl. Mater. 377 (2008) 1-11.   DOI
3 F.W. Wang, T.J. Liang, W. Yin, et al., Physical design of target station and neutron instruments for China spallation neutron source, Sci. China Phys. Mech. Astron. 56 (2013) 2401.
4 B.J. Vevera, D.A. McClintock, et al., Characterization of irradiated AISI 316L stainless steel disks removed from the Spallation Neutron Source, J. Nucl. Mater. 450 (2014) 147-162.   DOI
5 L.K. Mansur, J.R. Haines, Status of the Spallation Neutron with focus on target materials, J. Nucl. Mater. 356 (2006) 1-15.   DOI
6 G.J. Burns, A. Dey, et al., Towards an understanding of erosion in ISIS TS-2 spallation neutron targets? Nucl. Instrum. Methods Phys. Res. B 478 (2020) 158-162.   DOI
7 D.J. Findlay, G.P. Skoro, et al., Measurement and calculation of decay heat in ISIS spallation neutron target, Nucl. Instrum. Methods Phys. Res. A 908 (2018) 91-96.   DOI
8 P. Vontobel, M. Tamaki, et al., Post-irradiation analysis of SINQ target rods by thermal neutron radiography, J. Nucl. Mater. 356 (2006) 162-167.   DOI
9 M. Kawai, M. Furusaka, et al., R&D of A MW-class solid-target for a spallation neutron source, J. Nucl. Mater. 318 (2003) 38-55.   DOI
10 A.T. Nelson, J.A. O Toole, et al., Fabrication of a tantalum-clad tungsten target for LANSCE, J. Nucl. Mater. 431 (2012) 172-184.   DOI
11 S.A. Maloy, M.R. James, et al., Comparison of fission neutron and proton/spallation neutron irradiation effects on the tensile behavior of type 316 and 304 stainless steel, J. Nucl. Mater. 318 (2003) 283-291.   DOI
12 L.K. Mansur, Materials research and development for the spallation neutron source mercury target, J. Nucl. Mater. 318 (2003) 14-25.   DOI
13 H.S. Chen, X.L. Wang, China's first pulsed neutron source, Nat. Mater. 15 (2016) 689-691.   DOI
14 M. Futakawa, K. Haga, et al., Development of the Hg target in the J-PARC neutron source, Nucl. Instrum. Methods Phys. Res. 600 (2009) 18-21.   DOI
15 S.H. Wei, Q. J, et al., Advance of CSNS sold target, Mater. Sci. Forum 1024 (2021) 151-155.   DOI
16 S.A. Maloy, R.S. Lillard, et al., Water corrosion measurements on tungsten irradiated with high energy protons and spallation neutrons, J. Nucl. Mater. 431 (2012) 140-146.   DOI
17 M. Kawai, K. Kikuchi, et al., Fabrication of a tantalum-clad tungsten target for KENS, J. Nucl. Mater. 296 (2001) 312-320.   DOI
18 S. Zhuang, Q. Wu, et al., Radionuclides in target station coolant in the China spallation neutron source, Appl. Radiat. Isot. 168 (2021) 109523-109528.   DOI
19 A. Dey, L. Jones, Strategies to improve ISIS TS2 target life, J. Nucl. Mater. 506 (2018) 63-70.   DOI
20 J. Chen, X. D Peng, et al., Influence of high dose γ irradiation on the calibration characteristics of type K mineral-insulated metal-sheathed thermocouples, J. Alloys Compd. 696 (2017) 1046-1052.   DOI
21 J.F. Li, M. Kawai, Strength proof evaluation of diffusion-jointed W/Ta interfaces by small punch test, J. Nucl. Mater. 321 (2003) 129-134.   DOI