Browse > Article
http://dx.doi.org/10.1016/j.net.2022.05.002

Target alignment method of inertial confinement fusion facility based on position estimation  

Lin, Weiheng (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Zhu, Jianqiang (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Liu, Zhigang (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Pang, Xiangyang (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Zhou, Yang (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Cui, Wenhui (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Dong, Ziming (Joint Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science)
Publication Information
Nuclear Engineering and Technology / v.54, no.10, 2022 , pp. 3703-3716 More about this Journal
Abstract
Target alignment technology is one of the most critical technologies in laser fusion experiments and is an important technology related to the success of laser fusion experiments. In this study, by combining the open-loop and closed-loop errors of the target alignment, the Kalman state observer is used to estimate the position of the target, which improves the observation precision of the target alignment. Then the optimized result is used to guide the alignment of the target. This method can greatly optimize the target alignment error and reduce uncertainty. With the improvement of the target alignment precision, it will greatly improve the reliability and repeatability of the experiments' results, thereby improving the success rate of the experiments.
Keywords
Inertial confinement fusion; Target alignment; Laser system; Position estimation; Redundant measurement;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 N. Zade, et al., Target tracking based on approximate localization technique in deterministic directional passive sensor network, J. Ambient Intell. Hum. Comput. 11 (2021), https://doi.org/10.1007/s12652-020-02783-5.   DOI
2 J.P. Mitchell, et al., Sensor fusion of laser trackers for use in large-scale precision metrology, Proc. SPIE - Int. Soc. Opt. Eng. (2004) 5263, https://doi.org/10.1117/12.515021.   DOI
3 J.B. Zhao, et al., A robust iterated extended Kalman filter for power system dynamic state estimation, IEEE Trans. Power Syst. 32 (4) (2017) 3205-3216, https://doi.org/10.1109/TPWRS.2016.2628344.   DOI
4 S.L. Sun, et al., Multi-sensor optimal information fusion Kalman filter- ScienceDirect, Automatica 40 (6) (2004) 1017-1023, https://doi.org/10.1016/j.automatica.2004.01.014.   DOI
5 L. Wallace, et al., Development of a UAV-LiDAR system with application to forest inventory, Remote Sens. Basel 4 (6) (2012) 1519-1543, https://doi.org/10.3390/rs4061519.   DOI
6 Y.P. Li, et al., Large-scale absolute distance measurement with dual freerunning all-polarization-maintaining femtosecond fiber lasers, Chin. Opt Lett. 17 (2019), 091202, https://doi.org/10.3788/COL201917.091202.   DOI
7 S.Y. Chen, et al., Kalman filter for robot vision: a survey, IEEE Trans. Ind. Electron. 59 (11) (2012) 4409-4420, https://doi.org/10.1109/TIE.2011.2162714.   DOI
8 K. Ansari, et al., Real-time positioning based on Kalman filter and implication of singular spectrum analysis, Geosci. Rem. Sens. Lett. IEEE (99) (2020), https://doi.org/10.1109/LGRS.2020.2964300.   DOI
9 H. Yang, et al., Mechanical design and analysis of an indirect-drive cryogenic target, J. Fusion Energy 35 (4) (2016) 673-682, https://doi.org/10.1007/ s10894-016-0091-0.   DOI
10 L. Ren, et al., Target alignment in the Shen-Guang II Upgrade laser facility, High Power Laser Sci. Eng. 6 (1) (2018) 58-66, https://doi.org/10.1017/hpl.2018.4.   DOI
11 I.V. Aleksandrova, et al., Advanced fuel layering in line-moving, high-gain direct-drive cryogenic targets, High Power Laser Sci. Eng. 7 (3) (2019) e38, https://doi.org/10.1017/hpl.2019.23.   DOI
12 C. Gibson, et al., Design of the NIF cryogenic target system, Fusion Sci. Technol. 55 (3) (2008) 233-236, https://doi.org/10.13182/FST08-3453.   DOI
13 M. Galletti, et al., Ultra-broadband all-OPCPA petawatt facility fully based on LBO, High Power Laser Sci. Eng. (2020) e31, https://doi.org/10.1017/hpl.2020.31.   DOI
14 R.G. Brown, P. Hwang, Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons Publication, USA, 1997.
15 W. Liu, et al., Coordinate uncertainty analyses of coupled multiple measurement systems, Meas. Sci. Technol. 21 (6) (2010), 065103, https://doi.org/10.1088/0957-0233/21/6/065103.   DOI
16 E.M. Craparo, et al., Sensor placement in active multistatic sonar networks, Nav. Res. Logist. 64 (4) (2017) 287-304, https://doi.org/10.1002/nav.21877.   DOI
17 S.E. Bodner, The path to electrical energy using laser fusion, High Power Laser Sci. Eng. 7 (4) (2019) e63, https://doi.org/10.1017/hpl.2019.51.   DOI
18 Z.X. Zhang, et al., The 1 PW/0.1 Hz laser beamline in SULF facility, High Power Laser Sci. Eng. (2020) e4, https://doi.org/10.1017/hpl.2020.3.   DOI
19 J.L. Miquel, et al., Overview of the laser mega joule (LMJ) facility and PETAL Project in France, Rev. Laser Eng. 42 (2) (2020) 131, https://doi.org/10.2184/lsj.42.2_131.   DOI
20 B. Mark, et al., Status of NIF laser and high power laser research at LLNL, Proc. SPIE High Power Lasers Fusion Res. IV (2017), 1008403, https://doi.org/10.1117/12.2257571.   DOI
21 W. Zheng, et al., Laser performance upgrade for precise ICF experiment in SGIII laser facility, Matter Radiat. Extremes 2 (2017) 5, https://doi.org/10.1016/j.mre.2017.07.004.   DOI
22 F. Isono, et al., High-power non-perturbative laser delivery diagnostics at the final focus of 100-TW-class laser pulses, 2021, p. e25, https://doi.org/10.1017/hpl.2021.12.   DOI
23 J.Q. Zhu, et al., Status and development of high-power laser facilities at the NLHPLP, High Power Laser Sci. Eng. 6 (4) (2018) e55, https://doi.org/10.1017/hpl.2018.46.   DOI
24 P.D. Nicola, et al., Beam and target alignment at the national ignition facility using the target alignment sensor (TAS), Proc. SPIE - Int. Soc. Opt. Eng. 8505 (6) (2012) 318-322, https://doi.org/10.1117/12.930173.   DOI
25 D.H. Kalantar, et al., An overview of target and diagnostic alignment at the National Ignition Facility, Proc. SPIE - Int. Soc. Opt. Eng. 8505 (2012), 850509, https://doi.org/10.1117/12.969066, 09.   DOI
26 M. Luttmann, et al., Laser Megajoule alignment to target chamber center, SPIE LASE 7616 (2011), 76160N, https://doi.org/10.1117/12.873561.   DOI
27 T. Wang, et al., Development of target fabrication for laser-driven inertial confinement fusion at research center of laser fusion, High Power Laser Sci. Eng. e5 (2017) 28-36, https://doi.org/10.1017/hpl.2017.4.   DOI
28 Z.Y. Jiao, et al., Design and performance of final optics assembly in SG-II Upgrade laser facility, High Power Laser Sci. Eng. 6 (2018) 14-24, https://doi.org/10.1017/hpl.2018.8, 02.   DOI
29 B. Feng, et al., Image-based displacement and rotation detection using scale invariant features for 6 degree of freedom ICF target positioning, Appl. Opt. 54 (13) (2015) 76-80, https://doi.org/10.1364/AO.54.004130.   DOI
30 Y. Zhou, et al., Research on the system of nanosecond target aiming and positioning of the SG-II Updated laser facility, Chin. J. Lasers 41 (12) (2014) 163-169, https://doi.org/10.3788/CJL201441.1208002.   DOI
31 M.J. Guardalben, et al., Laser-system model for enhanced operational performance and flexibility on OMEGA EP, High Power Laser Sci. Eng. e8 (2020) 56-70, https://doi.org/10.1017/hpl.2020.6.   DOI