Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.027

The mechanical and thermodynamic properties of α-Na3(U0.84(2),Na0.16(2))O4: A combined first-principles calculations and quasi-harmonic Debye model study  

Chen, Haichuan (Key Laboratory of Fluid and Power Machinery, Ministry of Education)
Publication Information
Nuclear Engineering and Technology / v.53, no.2, 2021 , pp. 611-617 More about this Journal
Abstract
The mechanical properties of α-Na3(U0.84(2),Na0.16(2))O4 have been researched using the first-principles calculations combined with the quasi-harmonic Debye model. The obtained lattice parameters agree well with the published experimental data. The results of elastic constants indicate that α-Na3(U0.84(2),Na0.16(2))O4 is mechanically stable. The polycrystalline moduli are predicted. The results show that the α-Na3(U0.84(2),Na0.16(2))O4 exhibits brittleness and possesses obvious elastic anisotropy. The hardness shows that it can be considered a "soft material". Furthermore, the Debye temperature θD and the minimum thermal conductivity kmin are also discussed, respectively. Finally, the thermal expansion coefficient α, isobaric heat capacity CP and isochoric heat capacity CV are evaluated through the quasi-harmonic Debye model.
Keywords
Trisodium uranate; Mechanical properties; Thermodynamic properties; The first-principles calculations; The quasi-harmonic Debye model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.G. Cahill, S.K. Watson, R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B 46 (1992) 6131.   DOI
2 M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004) 57-72.   DOI
3 J.P. Watt, Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry, J. Appl. Phys. 51 (1980) 1520.   DOI
4 H.C. Chen, J.C. Wei, Y.Q. Chen, W.Y. Tian, Theoretical investigation of the mechanical and thermodynamic properties of titanium pernitride under high temperature and high pressure, J. Alloys Compd. 726 (2017) 1179-1185.   DOI
5 M.-C. Illy, A.L. Smith, G. Wallez, P.E. Raison, R. Caciuffo, R.J.M. Konings, Thermal expansion of the nuclear fuel-sodium reaction product Na3(U0.84(2),Na0.16(2))O4 - structural mechanism and comparison with related sodium-metal ternary oxides, J. Nucl. Mater. 490 (2017) 101-107.   DOI
6 D.R. Fredrickson, P.A.G. O'Hare, Enthalpy increments for α- and β-Na2UO4 and Cs2UO4 by drop calorimetry the enthalpy of the α to β transition in Na2UO4, J. Chem. Thermodyn. 8 (1976) 353-360.   DOI
7 D.F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput. 24 (1970) 647-656.   DOI
8 R.A. Cowley, Acoustic phonon instabilities and structural phase transitions, Phys. Rev. B 13 (1976) 4877-4885.   DOI
9 M. Bom, K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1954.
10 R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. 65 (1952) 349-354.   DOI
11 S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954) 823-843.   DOI
12 J.P. Long, C.Z. Shu, L.J. Yang, M. Yang, Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloys Compd. 644 (2015) 638-644.   DOI
13 M.A. Mignanelli, P.E. Potter, The reactions of sodium with urania, plutonia and their solid solutions, J. Nucl. Mater. 130 (1985) 289-297.   DOI
14 X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011) 1275-1281.   DOI
15 H. Ozisik, E. Deligoz, K. Colakoglu, E. Ateser, The first principles studies of the MgB7 compound: Hard material, Intermetallics 39 (2013) 84-88.   DOI
16 L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solid. 24 (1963) 909-917.   DOI
17 D.R. Clarke, C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003) 383-417.   DOI
18 R. Scholder, H. Glaser, uber Lithium- und Natriumuranate(V) und uber strukturelle Beziehungen zwischen den Verbindungstypen Li7AO6 und Li8AO6, Z. Anorg. Allg. Chem. 327 (1964) 15-27.   DOI
19 G.L. Hofman, J.H. Bottcher, J.A. Buzzell, G.M. Schwartzenberger, Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4), J. Nucl. Mater. 139 (1986) 151-155.   DOI
20 H.C. Chen, W.Y. Tian, First-principles investigation of the physical properties of cubic and orthorhombic phase Na3UO4, Physica B 524 (2017) 144-148.   DOI
21 J.P. Marcon, O. Pesme, M. France, Rev. Int. Hautes Temp. Refract. 9 (1972) 193-196.
22 S.F. Bartram, R.E. Fryxell, Preparation and crystal structure of NaUO3 and Na11U5O16, J. Inorg. Nucl. Chem. 32 (1970) 3701-3706.   DOI
23 M.A. Mignanelli, P.E. Potter, An investigation of the reaction between sodium and hyperstoichiometric urania, J. Nucl. Mater. 114 (1983) 168-180.   DOI
24 P.A.G. O'Hare, W.A. Shinn, F.C. Mrazek, A.E. Martin, Thermodynamic investigation of trisodium uranium(V) oxide (Na3UO4) I. Preparation and enthalpy of formation, J. Chem. Thermodyn. 4 (1972) 401-409.   DOI
25 D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992) 345, 329.   DOI
26 J.F. Nye, Physical Properties of Crystals, Oxford University Press Inc., New York, 1985, p. 145.
27 D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings, Surf. Coating. Technol. 163-164 (2003) 67-74.   DOI
28 R. Lorenzelli, T. Athanassiadis, R. Pascard, Chemical reactions between sodium and (U,Pu)O2 mixed oxides, J. Nucl. Mater. 130 (1985) 298-315.   DOI
29 J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008) 136406.   DOI
30 A.L. Smith, P.E. Raison, L. Martel, D. Prieur, T. Charpentier, G. Wallez, E. Suard, A.C. Scheinost, C. Hennig, P. Martin, K.O. Kvashnina, A.K. Cheetham, R.J.M. Konings, A new look at the structural properties of trisodium uranate Na3UO4, Inorg. Chem. 54 (7) (2015) 3552-3561.   DOI
31 B. Sadigh, A. Kutepov, A. Landa, P. Soderlind, Assessing relativistic effects and electron correlation in the actinide metals Th to Pu, Appl. Sci. 9 (2019) 5020.   DOI
32 J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.   DOI
33 G.L. Hofman, J.H. Bottcher, J.A. Buzzell, G.M. Schwartzenberger, Thermal conductivity and thermal expansion of hot-pressed trisodium uranate (Na3UO4), J. Nucl. Mater. 139 (1986) 151-155.   DOI
34 W.Y. Tian, J.H. Cai, H.C. Chen, Theoretical study the electronic, elastic properties and thermodynamics properties of ternary phosphide SrPt6P2, J. Phys. Chem. Solid. 106 (2017) 10-15.   DOI
35 C.G. Broyden, The convergence of a class of double-rank minimization algorithms 2. The new algorithm, J. Inst. Maths. Appl. 6 (1970) 222-231.   DOI
36 R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970) 317-322.   DOI
37 D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput. 24 (1970) 23-26.   DOI
38 G.N. Greaves, A.L. Greer1, R.S. Lakes, T. Rouxel, Poisson's ratio and modern materials, Nat. Mater. 10 (2011) 823-837.   DOI
39 K. Aoto, P. Dufour, H.Y. Yang, J.P. Glatz, Y. Kim, Y. Ashurko, R. Hill, N. Uto, A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265.   DOI
40 H. Ohshima, S. Kubo, Sodium-cooled fast reactor, in: Igor L. Pioro (Ed.), Handbook of Generation IV Nuclear Reactors, Woodhead Publishing, Elsevier, Duxford, UK, 2016, pp. 98-118.
41 M.G. Adamson, M.A. Mignanelli, P.E. Potter, M.H. Rand, On the oxygen thresholds for the reactions of liquid sodium with urania and urania-plutonia solid solutions, J. Nucl. Mater. 97 (1981) 203-212.   DOI