Browse > Article
http://dx.doi.org/10.1016/j.net.2019.11.028

Forecasting uranium prices: Some empirical results  

Pedregal, Diego J. (ETSI Industriales, Universidad de Castilla-La Mancha)
Publication Information
Nuclear Engineering and Technology / v.52, no.6, 2020 , pp. 1334-1339 More about this Journal
Abstract
This paper presents an empirical and comprehensive forecasting analysis of the uranium price. Prices are generally difficult to forecast, and the uranium price is not an exception because it is affected by many external factors, apart from imbalances between demand and supply. Therefore, a systematic analysis of multiple forecasting methods and combinations of them along repeated forecast origins is a way of discerning which method is most suitable. Results suggest that i) some sophisticated methods do not improve upon the Naïve's (horizontal) forecast and ii) Unobserved Components methods are the most powerful, although the gain in accuracy is not big. These two facts together imply that uranium prices are undoubtedly subject to many uncertainties.
Keywords
Uranium price; Unobserved components models; Exponential smoothing; ARIMA; Theta method; Artificial neural networks; Combination of forecasts;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Monnet, S. Gabriel, J. Percebois, Long-term availability of global uranium resources, Resour. Policy 53 (2017) 394-407.   DOI
2 V. Gomez, A. Maravall, Automatic modeling methods for univariate series, in: A Course in Time Series, John Wiley & Sons, Inc., 2001, pp. 171-201.
3 R. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Forecasting with Exponential Smoothing: the State Space Approach, Springer Science & Business Media, 2008.
4 S. Makridakis, M. Hibon, The m3-competition: results, conclusions and implications, Int. J. Forecast. 16 (4) (2000) 451-476.   DOI
5 M.A. Villegas, D.J. Pedregal, Automatic selection of unobserved components models for supply chain forecasting, Int. J. Forecast. 35 (1) (2019) 157-169 (special Section: Supply Chain Forecasting).   DOI
6 K.S. Chan, H. Tong, On estimating thresholds in autoregressive models, J. Time Ser. Anal. 7 (3) (1986) 179-190.   DOI
7 D. van Dijk, T. Terasvirta, P.H. Franses, Smooth transition autoregressive € models - a survey of recent developments, Econom. Rev. 21 (1) (2002) 1-47.   DOI
8 G. Sbrana, A. Silvestrini, Random switching exponential smoothing: a new estimation approach, Int. J. Prod. Econ. 211 (2019) 211-220.   DOI
9 M. Dittmar, The end of cheap uranium, Sci. Total Environ. 461-462 (2013) 792-798.   DOI
10 T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Publishing, New York, 2009.
11 S. Haykin, Neural Networks and Learning Machines, Prentice Hall, New Jersey, 2008.
12 G. Zhang, Times series forecasting using a hybrid arima and neural network model, Neurocomputing 50 (2003) 159-175.   DOI
13 V. Gomez, A. Maravall, Automatic modeling methods for univariate series, in: A Course in Time Series, John Wiley & Sons, Inc., 2001, pp. 171-201.
14 D. Cole, The Global Uranium Market, Reserve Bank of Australia, 2015. Reserve Bank of Australia.
15 D. Kryzia, L. Gawlik, Forecasting the price of uranium based on the costs of uranium deposits exploitation, Miner. Resour. Manag. 32 (2016) 93-110.
16 S. Makridakis, E. Spiliotis, V. Assimakopoulos, Statistical and machine learning forecasting methods: concerns and ways forward, PLoS One 13 (3) (2018) 1-26, https://doi.org/10.1371/journal.pone.0194889. URL 10.1371/journal.pone.0194889.
17 S. Makridakis, E. Spiliotis, V. Assimakopoulos, The m4 competition: results, findings, conclusion and way forward, Int. J. Forecast. 34 (2018) 802-808.   DOI
18 G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Forecasting and Control, fifth ed., John Wiley & Sons, 2015.
19 R.J. Hyndman, Y. Khandakar, Automatic time series forecasting: the forecast package for R, J. Stat. Softw. 3 (27) (2008) 1-22.
20 R.G. Brown, Statistical Forecasting for Inventory Control, McGraw-Hill, 1959.
21 A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge university press, 1989.
22 P.C. Young, D.J. Pedregal, W. Tych, Dynamic harmonic regression, J. Forecast. 18 (6) (1999) 369-394.   DOI
23 H. Zheng, J. Yuan, L. Chen, Short-term load forecasting using emd-lstm neural networks with a xgboost algorithm for feature importance evaluation, Energies 10 (2017) 1-20.   DOI
24 C.J. Taylor, D.J. Pedregal, P.C. Young, W. Tych, Environmental time series analysis and forecasting with the captain toolbox, Environ. Model. Softw 22 (6) (2007) 797-814.   DOI
25 J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods, second ed., Oxford University Press, 2012.
26 I.A.E. Agency, Uram-2018: ebb and flow - the economics of uranium mining, accessed: 2019-06-20, https://www.iaea.org/newscenter/news/uram-2018-ebb-and-flow-the-economics-of-uranium-mining.
27 V. Assimakopoulos, K. Nikolopoulos, The theta model: a decomposition approach to forecasting, Int. J. Forecast. 16 (4) (2000) 521-530.   DOI
28 N. Haneklaus, Y. Sun, B. Roland, B. Lottermoser, E. Schnug, To extract, or not to extract uranium from phosphate rock, that is the question, Environ. Sci. Technol. 51 (2) (2017) 753-754. URL 10.1021/acs.est.6b05506.   DOI
29 B. Parker, Z. Zhang, L. Rao, J. Arnold, An overview and recent progress in the chemistry of uranium extraction from seawater, Dalton Trans. 3 (2018) 1-6. URL 10.1039/c7dt04058j.
30 w. Mays, Limitations to progress in developing uranium resources, in: Proceedings of the 30th International Symposium on Uranium and Nuclear Energy, World Nuclear Association, 2005, pp. 39-60.
31 International Monetary Fund, Primary commodity prices, accessed: 2019-06-20, https://www.imf.org/en/Research/commodity-prices.
32 S. Kim, W. Ko, H. Nam, C. Kim, Y. Chung, S. Bang, Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost, Nucl. Eng. Technol. 49 (5) (2017) 1063-1070.   DOI
33 Q. Yan, S. Wang, B. Li, Forecasting uranium resource price prediction by extreme learning machine with empirical mode decomposition and phase space reconstruction, Discrete Dynam Nat. Soc. (2014) 1-10, 2014.
34 D.K. Barrow, N. Kourentzes, Distributions of forecasting errors of forecast combinations: implications for inventory management, Int. J. Prod. Econ. 177 (2016) 24-33.   DOI
35 J. Chen1, Y. Zhao, Q. Song, Z. Zhou1, S. Yang, Exploration and mining evaluation wywtem and price prediction of uranium resources, Min. Miner. Depos. 12 (2018) 85-94.
36 J. Chen, Y. Zhao, Q. Song, Z. Zhou, S. Yang, Exploration and mining evaluation system and price prediction of uranium resources, Min. Miner. Depos. 12 (2018) 85-94.
37 S. Kahouli, Re-examining uranium supply and demand: new insights, Energy Policy 39 (2011) 358-376.   DOI
38 N. Kourentzes, D. Barrow, S. Crone, Neural network ensemble operators for time series forecasting, Expert Syst. Appl. 41 (9) (2014) 4235-4244.   DOI
39 N. Kourentzes, Nnfor: time series forecasting with neural networks, r package version 0.9.6, URL, https://CRAN.R-project.org/package=nnfor, 2019.
40 R. Hyndman, A. Koehler, Another look at measures of forecast accuracy, Int. J. Forecast. 22 (4) (2006) 679-688.   DOI
41 G.E.P. Box, D.R. Cox, An analysis of transformations, J. R. Stat. Soc. Ser. B 26 (2) (1964) 211-252.
42 V.M. Guerrero, Time series analysis supported by power transformations, J. Forecast. 12 (1) (1993) 37-48.   DOI
43 D. Eddelbuettel, C. Sanderson, Rcpparmadillo: accelerating r with high-performance c++ linear algebra, Comput. Stat. Data Anal. 71 (2014) 1054-1063, https://doi.org/10.1016/j.csda.2013.02.005. URL.   DOI