Browse > Article
http://dx.doi.org/10.1016/j.net.2020.04.003

Development of hybrid shielding system for large-area Compton camera: A Monte Carlo study  

Kim, Jae Hyeon (Department of Nuclear Engineering, Hanyang University)
Lee, Junyoung (Department of Nuclear Engineering, Hanyang University)
Kim, Young-su (National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Science)
Lee, Hyun Su (Department of Nuclear Engineering, Hanyang University)
Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
Publication Information
Nuclear Engineering and Technology / v.52, no.10, 2020 , pp. 2361-2369 More about this Journal
Abstract
Compton cameras using large scintillators have been developed for high imaging sensitivity. These scintillator-based Compton cameras, however, mainly due to relatively low energy resolution, suffer from undesired background-radiation signals, especially when radioactive materials' activity is very low or their location is far from the Compton camera. To alleviate this problem for a large-size Compton camera, in the present study, a hybrid-type shielding system was designed that combines an active shield with a veto detector and a passive shield that surrounds the active shield. Then, the performance of the hybrid shielding system was predicted, by Monte Carlo radiation transport simulation using Geant4, in terms of minimum detectable activity (MDA), signal-to-noise ratio (SNR), and image resolution. Our simulation results show that, for the most cases, the hybrid shielding system significantly improves the performance of the large-size Compton camera. For the cases investigated in the present study, the use of the shielding system decreased the MDA by about 1.4, 1.6, and 1.3 times, increased the SNR by 1.2-1.9, 1.1-1.7, and 1.3-2.1 times, and improved the image resolution (i.e., reduced the FWHM) by 7-8, 1-6, and 3-5% for 137Cs, 60Co, and 131I point source located at 1-5 m from the imaging system, respectively.
Keywords
Compton camera; Background radiation; Hybrid shielding; Active shielding; Monte Carlo simulation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonzalez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, GEANT4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/S0168-9002(03)01368-8.   DOI
2 A. Poitrasson-Riviere, B.A. Maestas, M.C. Hamel, S.D. Clarke, M. Flaska, S.A. Pozzi, G. Pausch, C.-M. Herbach, A. Gueorguiev, M.F. Ohmes, J. Stein, Monte Carlo investigation of a high-efficiency, two-plane Compton camera for longrange localization of radioactive materials, Prog. Nucl. Energy 81 (2015) 127-133, https://doi.org/10.1016/j.pnucene.2015.01.009.   DOI
3 S. Li, L. Wang, Y. Cheng, X. Tuo, M. Liu, F. Yao, F. Leng, Y. Cheng, T. Cai, Y. Zhou, A novel natural environment background model for Monte Carlo simulation and its application in the simulation of anticoincidence measurement, Appl. Radiat. Isot. 108 (2016) 75-81, https://doi.org/10.1016/j.apradiso.2015.12.036.   DOI
4 Y.-S. Kim, J.H. Kim, H.S. Lee, C.H. Kim, Position-sensitive NaI(TL) detector module for large-area Compton camera, J. Kor. Phys. Soc. 72 (2018), https://doi.org/10.3938/jkps.72.26.
5 NIST listings, Compositions of materials used in STAR databases. http://physics.nist.gov/cgi-bin/Star/compos.pl?matno=144.
6 A. Del Guerra, N. Belcari, W. Bencivelli, A. Motta, S. Righi, A. Vaiano, G. Di Domenico, E. Moretti, N. Sabba, G. Zavattini, R. Campanini, N. Lanconelli, A. Riccardi, M.N. Cinti, R. Pani, R. Pellegrini, Monte Carlo study and experimental measurements of breast tumor detectability with the YAP-PEM prototype, in: 2002 IEEE Nuclear Science Symposium Conference Record vol. 3, 2002, pp. 1887-1891, https://doi.org/10.1109/nssmic.2002.1239691. Norfolk, VA, USA, Nov 10-16.
7 A. Poitrasson-Riviere, M.C. Hamel, J.K. Polack, M. Flaska, S.D. Clarke, S.A. Pozzi, Dual-particle imaging system based on simultaneous detection of photon and neutron collision events, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 760 (2014) 40-45.   DOI
8 R.W. Todd, J.M. Nightingale, D.B. Everett, A proposed gamma camera, Nature 251 (1974) 132-134.   DOI
9 Y. Kim, J.H. Kim, J. Lee, C.H. Kim, Large-area Compton camera for high-speed and three-dimensional imaging, IEEE Trans. Nucl. Sci. 65 (2018) 2817-2822.   DOI