Browse > Article
http://dx.doi.org/10.1016/j.net.2018.03.020

Analysis and radiation dose assessment of 222Rn in indoor air at schools: Case study at Ulju County, Korea  

Lee, ChoongWie (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Choi, Sungyeol (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
Kim, Hee Reyoung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.50, no.5, 2018 , pp. 806-813 More about this Journal
Abstract
$^{222}Rn$ exists in nature in the form of a rare radioactive gas. In terms of environmental radiation, issues regarding $^{222}Rn$ have persisted because of its radiological hazardousness. Ulju County is one of the regions of Ulsan metropolitan city, with a population of 227,699. Ulju County has the highest density of industrial complexes in Korea. In this study, $^{222}Rn$ radioactivity concentration was measured and analyzed in 57 schools in Ulju County using 114 passive LR-115 type detectors to secure radiological safety and confirm basic information for reduction of resident exposure to $^{222}Rn$. The effective dose of $^{222}Rn$ was assessed to find the actual risk of the concentration surveyed in schools to human beings. The dose depended on four factors: subjects, $^{222}Rn$ concentration, dose coefficient, and time. The individuals subjected to dose estimation were classified into three types: students, teachers, and office workers. The subjects had different dwelling locations and times. The findings demonstrate that the radiological hazard to students and workers at schools in Ulju County owing to $^{222}Rn$ is negligible in terms of $^{222}Rn$ activity recommendation level.
Keywords
Dose Assessments; Indoor Air; $^{222}Rn$; Schools; Ulju County;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Rahman, J. Anwar, A. Jabbar, M. Rafique, Indoor radon survey in 120 schools situated in four districts of the Punjab Province-Pakistan, Indoor Built Environ. 19 (2) (2009) 214-220.   DOI
2 G. Kendall, T. Smith, Doses from radon and its decay products to children, J. Radiol. Prot. 25 (2005) 241.   DOI
3 ICRP, in: Protection Against radon at Home and at Work, 65, ICRP Publication, 1993.
4 ICRP, in: 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, International Commission on Radiological Protection, 1991.
5 W.H. Organization, WHO Handbook on Indoor Radon: a Public Health Perspective, World Health Organization, 2009.
6 C.-K. Kim, Y.-J. Kim, H.-Y. Lee, B.-U. Chang, S. Tokonami, 220 Rn and its progeny in dwellings of Korea, Radiat. Meas. 42 (2007) 1409-1414.   DOI
7 M.H. Song, B.-U. Chang, Y. Kim, K.-W. Cho, Radon exposure assessment for underground workers: a case of Seoul subway police officers in Korea, Radiat. Protect. Dosim. 147 (2011) 401-405.   DOI
8 S.-B. Kwon, Y. Cho, D. Park, E.-Y. Park, Study on the indoor air quality of Seoul metropolitan subway during the rush hour, Indoor Built Environ. 17 (2008) 361-369.   DOI
9 Y.W. Park, Alpha Track Detector with Foldable Semicircle Ring, in, Google Patents, 2007.
10 J.-g. Lee, S.-h. Byeon, J.-h. Lee, ICCAS-SICE, 2009, in: The Effect of Platform Screen Door (PSD) for Fine Particles at Subway Train in Seoul, Korea, IEEE, 2009, pp. 1707-1710.
11 D. Nikezic, K. Yu, Optical characteristics of tracks in solid state nuclear track detectors studied with ray tracing method, Nucl. Track Detect. Des. Meth. Appl. (2009) 177-195. Chapter 5.
12 Y.W. Park, in: Principle and Method of Measurement of Alpha Track Detector, Korea Occupational Safety and Health Administration Seminar, 2015.
13 S. Rahman, N. Mati, B. Ghauri, Seasonal indoor radon concentration in the North West Frontier Province and federally administered tribal areasd Pakistan, Radiat. Meas. 42 (2007) 1715-1722.   DOI
14 T. Ramachandran, T. Muraleedharan, A. Shaikh, M.S. Ramu, Seasonal variation of indoor radon and its progeny concentration in a dwelling, Atmos. Environ. Part A Gen. Top. 24 (1990) 639-643.   DOI
15 M. Faheem, N. Mati, Seasonal variation in indoor radon concentrations in dwellings in six districts of the Punjab province, Pakistan, J. Radiol. Prot. 27 (2007) 493.   DOI
16 K.S. Lee, S.Y. Seo, Y.J. Kim, K.H. Choi, B.S. Son, A study on the indoor radon concentration of elementary school in Korea, Kor. Soc. Indoor Environ. 9 (2012) 127-133.
17 J. Marsh, A. Birchall, K. Davis, Comparative dosimetry in homes and mines: estimation of K-factors, Radioact. Environ. 7 (2005) 290-298.
18 ICRP, Recommendations of the International Commission on Radiological Protection, 37, Ann. ICRP, 2007.
19 D. Annex, Sources and Effects of Ionizing Radiation, 125, Investigation of I, 1977.
20 R. Winkler-Heil, W. Hofmann, J. Marsh, A. Birchall, Comparison of radon lung dosimetry models for the estimation of dose uncertainties, Radiat. Protect. Dosim. 127 (1-4) (2007) 27-30.   DOI
21 J.W. Marsh, J.D. Harrison, D. Laurier, E. Blanchardon, F. Paquet, M. Tirmarche, Dose conversion factors for radon: recent developments, Health Phys. 99 (2010) 511-516.   DOI
22 A. Birchall, A. James, Uncertainty analysis of the effective dose per unit exposure from radon progeny and implications for ICRP risk-weighting factors, Radiat. Protect. Dosim. 53 (1994) 133-140.   DOI
23 J. Porstendorfer, Physical parameters and dose factors of the radon and thoron decay products, Radiat. Protect. Dosim. 94 (2001) 365-373.   DOI
24 ICRP, ICRP Main Commission Meeting, April 13-17, in, Sydney. Australia.
25 ICRP, The 2007 Recommendations of the International Commission on Radiological Protection, 37, ICRP Publication, 2007, pp. 2-4, 103, Ann. ICRP.
26 ICRP, Lung Cancer Risk from Radon and Progeny and Statement on Radon, 40, ICRP Publication, 2010, 115, Ann. ICRP.
27 H. Hotzl, R. Winkler, Long-term variation of outdoor radon equilibrium equivalent concentration, Radiat. Environ. Biophys. 33 (1994) 381-392.   DOI
28 J. Marsh, A. Birchall, Sensitivity analysis of the weighted equivalent lung dose per unit exposure from radon progeny, Radiat. Protect. Dosim. 87 (2000) 167-178.   DOI
29 S. Singh, R. Malhotra, J. Kumar, L. Singh, Indoor radon measurements in dwellings of Kulu area, Himachal Pradesh, using solid state nuclear track detectors, Radiat. Meas. 34 (2001) 505-508.   DOI
30 Y. Kim, B.-U. Chang, H.-M. Park, C.-K. Kim, S. Tokonami, National radon survey in Korea, Radiat. Protect. Dosim. 146 (2011) 6-10.   DOI
31 R.C. Valle, S. Normandeau, G.R. Gonzalez, Education at a Glance Interim Report: Update of Employment and Educational Attainment Indicators, Organisation for Economic Co-operation and Development (OECD), 2015.
32 J. Vaupotic, N. Smrekar, Z.S. Zunic, Comparison of radon doses based on different radon monitoring approaches, J. Environ. Radioact. 169 (2017) 19-26.
33 P. Kolarz, D. Filipovic, B. Marinkovic, Daily variations of indoor air-ion and radon concentrations, Appl. Radiat. Isot. 67 (2009) 2062-2067.   DOI
34 C. Man, H. Yeung, Modeling and measuring the indoor radon concentrations in high-rise buildings in Hong Kong, Appl. Radiat. Isot. 50 (1999) 1131-1135.   DOI
35 H. Al-Khateeb, A. Al-Qudah, F. Alzoubi, M. Alqadi, K. Aljarrah, Radon concentration and radon effective dose rate in dwellings of some villages in the district of Ajloun, Jordan, Appl. Radiat. Isot. 70 (2012) 1579-1582.   DOI
36 M.C. Turner, D. Krewski, C.A. Pope III, Y. Chen, S.M. Gapstur, M.J. Thun, Longterm ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers, Am. J. Respir. Crit. Care Med. 184 (2011) 1374-1381.   DOI
37 A. Gray, S. Read, P. McGale, S. Darby, Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them, BMJ 338 (2009) a3110.   DOI
38 R.E. Thompson, D.F. Nelson, J.H. Popkin, Z. Popkin, Case-control study of lung cancer risk from residential radon exposure in Worcester County, Massachusetts, Health Phys. 94 (2008) 228-241.   DOI
39 T.K. Sethi, M.N. El-Ghamry, G.H. Kloecker, Radon and lung cancer, Clin. Adv. Hematol. Oncol. 10 (2012) 157-164.
40 D. Tchorz-Trzeciakiewicz, M. Klos, Factors affecting atmospheric radon concentration, human health, Sci. Total Environ. 584 (2017) 911-920.
41 N. Hunter, C.R. Muirhead, J.C. Miles, J.D. Appleton, Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England, Radiat. Protect. Dosim. 136 (2009) 17-22.   DOI
42 M. Kreuzer, B. Grosche, M. Schnelzer, A. Tschense, F. Dufey, L. Walsh, Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: follow-up 1946-2003, Radiat. Environ. Biophys. 49 (2010) 177-185.   DOI
43 C. Sainz, L.S. Quindos, I. Fuente, J. Nicolas, L. Quindos, Analysis of the main factors affecting the evaluation of the radon dose in workplaces: the case of tourist caves, J. Hazard Mater. 145 (2007) 368-371.   DOI
44 B.P. Jelle, Development of a model for radon concentration in indoor air, Sci. Total Environ. 416 (2012) 343-350.   DOI
45 K. Akbari, J. Mahmoudi, M. Ghanbari, Influence of indoor air conditions on radon concentration in a detached house, J. Environ. Radioact. 116 (2013) 166-173.   DOI
46 M. Maduar, M. Campos, B. Mazzilli, F. Villaverde, Assessment of external gamma exposure and radon levels in a dwelling constructed with phosphogypsum plates, J. Hazard Mater. 190 (2011) 1063-1067.   DOI
47 S. Yoon, B.-U. Chang, Y. Kim, J.-I. Byun, J.-Y. Yun, Indoor radon distribution of subway stations in a Korean major city, J. Environ. Radioact. 101 (2010) 304-308.   DOI
48 C.-K. Kim, S.-C. Lee, D.-M. Lee, B.-U. Chang, B.-H. Rho, H.-D. Kang, Nationwide survey of radon levels in Korea, Health Phys. 84 (2003) 354-360.   DOI
49 KINS, KINS-GR-300, in: Assessment of Radiation Risk for the Korean Population, 2005.
50 D.-S. Kim, Y.-S. Kim, Distributions of airborne radon concentrations in Seoul metropolitan subway stations, Health Phys. 65 (1993) 12-16.   DOI
51 Jae sik Jeon, Deok chan Kim, Yeong ung Park, Ji yeong Lee, Sang su Lee, Nam jin Kim, Min yeong Kim, in: Analysis on the Distribution of High Level Radon and Reduction Strategy at Subway Platform, Korean Society for Atmospheric Environment, 2006, pp. 552-553.
52 A. Clouvas, S. Xanthos, G. Takoudis, Indoor radon levels in Greek schools, J. Environ. Radioact. 102 (2011) 881-885.   DOI
53 A. Cavallo, The radon equilibrium factor and comparative dosimetry in homes and mines, Radiat. Protect. Dosim. 92 (2000) 295-298.   DOI
54 A. Auvinen, L. Salonen, J. Pekkanen, E. Pukkala, T. Ilus, P. Kurttio, Radon and other natural radionuclides in drinking water and risk of stomach cancer: a case-cohort study in Finland, Int. J. Canc. 114 (2005) 109-113.   DOI
55 K. Yu, B. Lau, D. Nikezic, Assessment of environmental radon hazard using human respiratory tract models, J. Hazard Mater. 132 (2006) 98-110.   DOI
56 F. Bochicchio, Z. Zunic, C. Carpentieri, S. Antignani, G. Venoso, V. Carelli, C. Cordedda, N. Veselinovic, T. Tollefsen, P. Bossew, Radon in indoor air of primary schools: a systematic survey to evaluate factors affecting radon concentration levels and their variability, Indoor Air 24 (2014) 315-326.   DOI