Browse > Article
http://dx.doi.org/10.1016/j.net.2017.10.014

Toward the multiscale nature of stress corrosion cracking  

Liu, Xiaolong (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
Hwang, Woonggi (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
Park, Jaewoong (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
Van, Donghyun (Daewoo Institute of Construction Technology)
Chang, Yunlong (School of Materials Science and Engineering, Shenyang University of Technology)
Lee, Seung Hwan (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
Kim, Sung-Yup (Computational Science Research Center, Korea Institute of Science and Technology)
Han, Sangsoo (Computational Science Research Center, Korea Institute of Science and Technology)
Lee, Boyoung (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
Publication Information
Nuclear Engineering and Technology / v.50, no.1, 2018 , pp. 1-17 More about this Journal
Abstract
This article reviews the multiscale nature of stress corrosion cracking (SCC) observed by high-resolution characterizations in austenite stainless steels and Ni-base superalloys in light water reactors (including boiling water reactors, pressurized water reactors, and supercritical water reactors) with related opinions. A new statistical summary and comparison of observed degradation phenomena at different length scales is included. The intrinsic causes of this multiscale nature of SCC are discussed based on existing evidence and related opinions, ranging from materials theory to practical processing technologies. Questions of interest are then discussed to improve bottom-up understanding of the intrinsic causes. Last, a multiscale modeling and simulation methodology is proposed as a promising interdisciplinary solution to understand the intrinsic causes of the multiscale nature of SCC in light water reactors, based on a review of related supporting application evidence.
Keywords
Characterization; Intergranular Corrosion; Light Water Reactors; Multiscale Simulation; Stress Corrosion Cracking;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Robertson, The mechanism of high temperature aqueous corrosion of stainless steels, Corros. Sci. 32 (1991) 443-465.   DOI
2 B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corros. Sci. 40 (1998) 337-370.   DOI
3 C.Y. Zou, Y.K. Shin, A.C.T. van Duin, H.Z. Fang, Z.K. Liu, Molecular dynamics simulations of the effects of vacancies on nickel self-diffusion, oxygen diffusion and oxidation initiation in nickel, using the ReaxFF reactive force field, Acta Materialia 83 (2015) 102-112.   DOI
4 M. Olszta, D. Schreiber, L. Thomas, S. Bruemmer, High-resolution crack imaging reveals degradation processes in nuclear reactor structural materials, Adv. Mater. Process. 170 (2012) 17-21.
5 Lide DR. Handbook of chemistry and physics.
6 G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, Corrosion and stress corrosion cracking in supercritical water, J. Nucl. Mater. 371 (2007) 176-201.   DOI
7 J.H. Liu, G. Bin, The Effect of Dissolved Oxygen on Stress Corrosion Cracking of 310S in SCW, 2016 downloaded from, https://www.iaea.org/ NuclearPower/Downloadable/Meetings/2016/2016-10-10-10-14-NPTDS/III- 5_J.Liu_The_effect_of_dissolved_oxygen.pdf.
8 S.E. Ziemniak, M. Hanson, Corrosion behavior of 304 stainless steel in high temperature hydrogenated water, Corros. Sci. 44 (2002) 2209-2230.   DOI
9 M. Nezakata, H. Akhiania, S. Penttilab, S.M. Sabetc, J. Szpunara, Effect of thermo-mechanical processing on oxidation of austenitic stainless steel 316L in supercritical water, Corros. Sci. 94 (2015) 197-206.   DOI
10 T. Terachi, K. Fujii, K. Arioka, Microstructural characterization of SCC crack tip and oxide film for SUS 316 stainless steel in simulated PWR primary water at $320^{\circ}C$, J. Nucl. Sci. Technol. 42 (2005) 225-232.   DOI
11 S. Lozano-Perez, K. Kruska, I. Iyengarb, T. Terachic, T. Yamadac, The role of cold work and applied stress on surface oxidation of 304 stainless steel, Corros. Sci. 56 (2012) 78-85.   DOI
12 G.S. Was, S. Teysseyre, Z. Jiao, Corrosion of austenitic alloys in supercritical water, Corrosion 63 (2006) 989-1005.
13 S. Cisse, L. Laffont, B. Tanguy, M.C. Lafont, E. Andrieu, Effect of surface preparation on the corrosion of austenitic stainless steel 304L in high temperature steam and simulated PWR primary water, Corros. Sci. 56 (2012) 209-216.   DOI
14 M. Fulger, M. Mihalache, D. Ohai, S. Fulger, S.C. Valeca, Analyses of oxide films grown on AlSi 304L stainless steel and Incoloy 800HT exposed to supercritical water environment, J. Nucl. Mater. 415 (2011) 147-157.   DOI
15 Y. Sun, S. Hara, Atomistic study of segregation and diffusion of yttrium and calcium cations near electrolyte surfaces in solid oxide fuel cells, J. Eur. Ceram. Soc. 35 (2015) 3063-3074.   DOI
16 F. Ulomek, V. Mohles, Separating grain boundary migration mechanisms in molecular dynamics simulation, Acta Mater. 103 (2016) 424-432.   DOI
17 M. Upmanyu, D.J. Srolovitz, A.E. Lobkovsky, J.A. Warren, W.C. Carter, Simultaneous grain boundary migration and grain rotation, Acta Mater. 54 (2006) 1707-1719.   DOI
18 S.M. Bruemmer, L.E. Thomas, High-resolution Analytical Electron Microscopy Characterization of Stress Corrosion Crack Tips, 2001 (ICF100890OR), downloaded from, http://www.gruppofrattura.it/ocs/index.php/ICF/ICF10/ paper/view/4752/6759.
19 H.P. Kim, D.J. Kim, S.W. Kim, Y.S. Lim, S.S. Hwang, Ex situ and in situ characterization of stress corrosion cracking of nickel-base alloys at high temperature, J. Solid State Electr 18 (2014) 309-323.   DOI
20 C. Guerre, Stress corrosion cracking of nickel base alloys in PWR primary water, A report in the MINOS Workshop, Materials Innovation for Nuclear Optimized Systems Workshop, December 5-7, 2012, CEA-INSTN Saclay, France, http://dx.doi.org/10.105.1/epjconf/20135104003.
21 J. Hemminger, G. Crabtree, J. Sarrao, From quanta to the continuum: opportunity for mesoscale science. A Report for the Basic Energy Sciences Advisory Committee Mesoscale Science Subcommittee, 2012. http://science.energy.gov/-/media/bes/pdf/reports/files/OFMS_rpt.pdf.
22 J.S. Chen, H.S. Lu, D. Moldovan, D. Wolf, Mesoscale modeling of grain boundary migration under stress using coupled finite element and meshfree methods, 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY (US), 06/02/2002e06/05/2002. downloaded from: https://searchworks.stanford.edu/view/11318775.
23 C.P. Race, R. Hadian, J. von Pezold, B. Grabowski, J. Neugebauer, Mechanisms and kinetics of the migration of grain boundaries containing extended defects, Phys. Rev. B 92 (2015) 174115, https://doi.org/10.1103/PhysRevB.92.174115.   DOI
24 C.P. Race, J. von Pezold, J. Neugebauer, Role of the mesoscale in migration kinetics of flat grain boundaries, Phys. Rev. B 89 (2014) 214110.   DOI
25 Q. Du, R. Lipton, Peridynamics, fracture, and nonlocal continuum models, SIAM News 47 (2014) downloaded from, https://www.siam.org/pdf/news/ 2148.pdf.
26 A.D. Rollett, G.S. Rohrer, R.M. Suter, Understanding materials microstructure and behavior at the mesoscale, MRS Bull. 40 (2015) 951-958.   DOI
27 J. Lindsay, Stress Corrosion Cracking and Internal Oxidation of Alloy 600 in High Temperature Hydrogenated Steam and Water, Ph.D. thesis, University of Manchester, 2014.
28 Y.S. Lim, S.W. Kim, S.S. Hwang, H.P. Kim, C.H. Jang, Intergranular oxidation of Ni-based Alloy 600 in a simulated PWR primary water environment, Corros. Sci. 108 (2016) 125-133.   DOI
29 M. Sennour, P. Laghoutaris, C. Guerre, R. Molins, Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment, J. Nucl. Mater. 393 (2009) 254-266.   DOI
30 D.K. Schreiber, M.J. Olszta, D.W. Saxey, K. Kruska, K.L. Moore, S.L. Perez, S.M. Bruemmer, Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water, Microsc. Microanal 19 (2013) 676-687.
31 M. Meisnar, A. Vilalta-Clemente, A. Gholinia, M. Moody, A.J. Wilkinson, N. Huin, S. Lozano-Perez, Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels, Micron 75 (2015) 1-10.   DOI
32 Y. Yang, K.G. Field, T.R. Allen, J.T. Busby, Roles of vacancy/interstitial diffusion and segregation in the microchemistry at grain boundaries of irradiated Fe- Cr-Ni alloys, J. Nucl. Mater. 473 (2016) 35-53.   DOI
33 D.A. Newsome, D. Sengupta, A.C.T. van Duin, High-temperature oxidation of SiC-based composite: rate constant calculation from ReaxFF MD simulation, part II, J. Phys. Chem. C 117 (2013) 5014-5027.   DOI
34 L. Marchetti, S. Perrin, F. Jambon, M. Pijolat, Corrosion of nickel-base alloys in primary medium of pressurized water reactors: new insights on the oxide growth mechanisms and kinetic modeling, Corros. Sci. 102 (2016) 24-35.   DOI
35 M. Dumerval, S. Perrin, L. Marchetti, M. Sennour, F. Jomard, S. Vaubaillon, Y. Wouters, Effect of implantation defects on the corrosion of 316L stainless steels in primary medium of pressurized water reactors, Corros. Sci. 107 (2016) 1-8.   DOI
36 V. Alexandrov, M.L. Sushko, D.K. Schreiber, S.M. Bruemmer, K.M. Rosso, Ab initio modeling of bulk and intragranular diffusion in Ni alloys, J. Phys. Chem. Lett. 6 (2015) 1618-1623.   DOI
37 A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski, Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer Cham Heidelberg, New York Dordrecht London, 2014.
38 D. Farkas, Atomistic theory and computer simulation of grain boundary structure and diffusion, J. Phys. Condens. Matter 12 (2000) R497-R516.   DOI
39 G.R. Love, Dislocation pipe diffusion, Acta Metall. 12 (1964) 731-737.   DOI
40 M. Legros, G. Dehm, E. Arzt, J.B. John, Observation of giant diffusivity along dislocation cores, Science 21 (2008) 1646-1649.
41 C.O.T. Galvin, M.W.D. Cooper, P.C.M. Fossati, C.R. Stanek, R.W. Grimes, D.A. Andersson, Pipe and grain boundary diffusion of He in UO2, J. Phys. Condens. Matter 28 (2016) 405002 (1-11).   DOI
42 K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311 (2006) 977-980.   DOI
43 M.L. Sushko, V. Alexandrov, D.K. Schreiber, K.M. Rosso, S.M. Bruemmer, Multiscale model of metal alloy oxidation at grain boundaries, J. Chem. Phys. 142 (2015), 214114-1-214114-8.   DOI
44 R.A. Friesner, Ab initio quantum chemistry: methodology and applications, P. Natl. Acad. Sci. USA 102 (2005) 6648-6653.   DOI
45 J.T. Hynes, Molecules in motion: chemical reaction and allied dynamics in solution and elsewhere, Annu. Rev. Phys. Chem. 66 (2015) 1-20.   DOI
46 L. Kunz, F.M. Kuhn, O. Deutschmann, Kinetic Monte Carlo simulations of surface reactions on supported nanoparticles: a novel approach and computer code, J. Chem. Phys. 143 (2015), 044108-1-10.   DOI
47 I.B. Obot, D.D. Macdonald, Z.M. Gasem, Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors Part 1: an overview, Corros. Sci. 99 (2015) 1-30.   DOI
48 M. Pavone, A.B. Mu-noz-García, A.M. Ritzmann, E.A. Carter, First-principles study of lanthanum strontium manganite: insights into electronic structure and oxygen vacancy formation, J. Phys. Chem. C 118 (2014) 13346-13356.   DOI
49 T. Tan, X.L. Yang, C.M. Krauter, Y.G. Ju, E.A. Carter, Ab initio kinetics of hydrogen abstraction from methyl acetate by hydrogen, methyl, oxygen, hydroxyl, and hydroperoxy radicals, J. Phys. Chem. A 119 (2015) 6277-6390.
50 R.E. Thomas, G.H. Booth, A. Alavi, Accurate ab initio calculation of ionization potentials of the first-row transition metals with the configurationinteraction quantum Monte Carlo technique, Phys. Rev. Lett. 114 (2015) 033001, https://doi.org/10.1103/PhysRevLett.114.033001.   DOI
51 T. Nakagawa, N. Totsuka, T. Terachi, N. Nakajima, Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water, J. Nucl. Sci. Technol. 40 (2003) 39-43.   DOI
52 M. Da Cunha Belo, M. Walls, N.E. Hakiki, J. Coset, E. Picquenard, G. Sagon, D. Noel, Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment, Corros. Sci. 40 (1998) 447-463.   DOI
53 S.E. Ziemniak, M. Hanson, Corrosion behavior of NiCrFe alloy 600 in high temperature hydrogenated water, Corros. Sci. 48 (2006) 498-521.   DOI
54 Y.L. Han, J.N. Mei, Q.J. Peng, E.H. Han, W. Ke, Effect of electropolishing on corrosion of Alloy 600 in high temperature water, Corros. Sci. 98 (2015) 72-80.   DOI
55 Y.S. Lim, H.P. Kim, S.S. Hwang, Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment, J. Nucl. Mater. 440 (2013) 46-54.   DOI
56 D. Morton, N. Lewis, M. Hanson, S. Rice, P. Sanders, Nickel Alloy Primary Water Bulk Surface and SCC Corrosion Film Analytical Characterization and SCC Mechanistic Implications (LM-07K022), 2007 downloaded from, http:// www.osti.gov/scitech/servlets/purl/903204/.
57 T. Moss, G.P. Cao, G.S. Was, Oxidation of alloy 600 and alloy 690: experimentally accelerated study in hydrogenated supercritical water, Metall. Mat. Trans. A 48 (2017) 1596-1612.   DOI
58 S.E. Ziemniak, M. Hanson, Corrosion behavior of NiCrMo alloy 625 in high temperature, hydrogenated water, Corros. Sci. 45 (2003) 1595-1618.   DOI
59 H. Dugdale, D.E.J. Armstrong, E. Tarleton, S.G. Roberts, S. Lozano-Perez, How oxidized grain boundaries fail, Acta Mater. 61 (2013) 4707-4713.   DOI
60 K. Arioka, R.W. Staehle, T. Yamada, T. Miyamoyo, T. Terachi, Degradation of Alloy 690 after relatively short times, Corrosion 72 (2016) 1252-1268.   DOI
61 M.C. Sun, X.Q. Wu, Z.E. Zhang, E.H. Han, Oxidation of 316 stainless steel in supercritical water, Corros. Sci. 51 (2009) 1069-1072.   DOI
62 A.P. Jivkov, N.P.C. Stevens, T.J. Marrow, A two-dimensional mesoscale model for intergranular stress corrosion crack propagation, Acta Mater. 54 (2006) 3493-3501.   DOI
63 T.L. Xu, R. Stewart, J.H. Fan, X.G. Zeng, A.L. Yao, Bridging crack propagation at the atomistic and mesoscopic scale for BCC-Fe with hybrid multiscale methods, Eng. Fract. Mech. 155 (2016) 166-182.   DOI
64 S. Yip, M.P. Short, Multiscale materials modelling at the mesoscale, Nat. Mater. Commentary 12 (2013) 774-777.   DOI
65 S.A. Silling, Peridynamic Model for Fatigue Cracking, 2014 downloaded from: http://prod.sandia.gov/techlib/access-control.cgi/2014/1418590.pdf.
66 K. Fu, L. Chang, L. Ye, Y.B. Yin, Indentation stress-based models to predict fracture properties of brittle thin film on a ductile substrate, Surf. Coat. Tech. 296 (2016) 46-57.   DOI
67 H. Haftbaradaran, X.C. Xiao, H.J. Gao, Critical film thickness for fracture in thin-film electrodes on substrates in the presence of interfacial sliding, Modelling Simul, Mater. Sci. Eng. 21 (2013) 074008.   DOI
68 O. Verners, A.C.T. Van Duin, Comparative molecular dynamics study of fcc-Ni nanoplate stress corrosion in water, Surf. Sci. 633 (2015) 94-101.   DOI
69 M.L. Rossi, C.D. Taylor, A.C.T. van Duin, Reduced yield stress for zirconium exposed to iodine: reactive force field simulation, Adv. Model. Simulation Eng. Sci. 2 (2014) 19-27, https://doi.org/10.1186/s40323-014-0019-z.
70 C.L. White, Grain Boundary Segregation and Intergranular Failure. International Al-Li Conference, 19 May 1980. Stone Mountain, Ga.
71 M. Yamaguchi, M. Shiga, H. Kaburaki, Grain boundary decohesion by sulfur segregation in ferromagnetic iron and nickel-a first-principles study, Mater. Trans. 47 (2006) 2682-2689.   DOI
72 H.P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K.I. Nomura, A.C.T. van Duin, P. Vashishta, Z. Yuan, Embrittlement of metal by solute segregationinduced amorphization, Phys. Rev. Lett. 104 (2010) 155502 (1-4).   DOI
73 S.Y. Persaud, A. Korinek, J. Huang, G.A. Botton, R.C. Newman, Internal oxidation of Alloy 600 exposed to hydrogenated steam and the beneficial effects of thermal treatment, Corros. Sci. 86 (2014) 108-122.   DOI
74 G. Bertail, F. Scenini, M.G. Burke, The intergranular oxidation susceptibility of thermally-treated Alloy 600, Corros. Sci. 114 (2017) 112-122.   DOI
75 K. Kruska, Understanding the Mechanism of Stress Corrosion Cracking, Ph.D. thesis, University of Oxford, 2012.
76 T.R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott, S.R. Phillpot, Chargedoptimized many-body potential for the hafnium/hafnium oxide system, Phys. Rev. B 81 (2010) 125328.   DOI
77 S. Lozano-Perez, J. Dohr, M. Meisnar, K. Kruska, SCC in PWRs: learning from a bottom-up approach, Metall. Mat. Trans. E 1 (2014) 194-210.
78 A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396-9409.   DOI
79 T.P. Senftle, S.H. Md Mahbubul Islam, S.B. Kylasa, Y.X. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, A.C.T. van Duin, The ReaxFF reactive force-field: development, applications and future directions, npj Computational Mater. 2 (2016), 15011, https://doi.org/10.1038/npjcompumats.2015.11.   DOI
80 X.W. Zhou, F.P. Doty, Embedded-ion method: an analytical energyconserving charge-transfer interatomic potential and its application to the La-Br system, Phys. Rev. B 78 (2008) 224307.   DOI
81 D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Condens. Matter 14 (2002) 783-802.   DOI
82 S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472-6486.   DOI
83 F.H. Streitz, J.W. Mintmire, Electrostatic potentials for metal-oxide surfaces and interfaces, Phys. Rev. B 50 (1994) 11996-12003.   DOI
84 M. Sennour, L. Marchetti, F. Martin, S. Perri, R. Molins, M. Pijolat, A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor, J. Nucl. Mater. 402 (2010) 147-156.   DOI
85 M.C. Sun, X.Q. Wu, Z.E. Zhang, E.H. Han, Analysis of oxide film grown on Alloy 625 in oxidizing supercritical water, J. Supercrit. Fluid 47 (2008) 309-317.   DOI
86 K.H. Chang, J.S. Huang, C.B. Yan, T.K. Yeh, F.R. Chen, J.J. Kai, Corrosion behavior of Alloy 625 in supercritical water environments, Prog. Nucl. Energy 57 (2012) 20-31.   DOI
87 W.J. Kuang, X.Q. Wu, E.H. Han, J.C. Rao, The mechanism of oxide film formation on alloy 690 in oxygenated high temperature water, Corros. Sci. 53 (2011) 3853-3860.   DOI
88 X.Y. Zhong, E.H. Han, X.Q. Wu, Corrosion behavior of Alloy 690 in aerated supercritical water, Corros. Sci. 66 (2013) 369-379.   DOI
89 F. Huang, J.Q. Wang, E.H. Han, W. Ke, Microstructural characteristics of the oxide films formed on Alloy 690 TT in pure and primary water at $325^{\circ}C$, Corros. Sci. 76 (2013) 52-59.   DOI
90 C. Maffiotte, A.S. Maderuelo, D.G. Briceno, AES characterization of oxide films formed on nickel-base alloys at supercritical water reactor (SCWR) conditions, Surf. Interface Anal. (2015), https://doi.org/10.1002/sia.5906.
91 S. Bruemmer, M. Olszta, D. Schreiber, M. Toloczko, SCC initiation measurements on alloy 600 and 690 materials in PWR primary water, in: Alloy 690/ 52/152 PWSCC Research Collaboration Meeting (Conference Presentation), Electric Power Research Institute, Tampa, Florida, USA, 2014.
92 J. Panter, B. Viguier, J.M. Cloue, M. Foucault, P. Combrade, E. Andrieu, Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600, J. Nucl. Mater. 348 (2006) 213-221.   DOI
93 D.K. Schreiber, S.M. Bruemmer, M.J. Olszta, Grain boundary depletion and migration during selective oxidation of Cr in a Ni-5Cr binary alloy exposed to high-temperature hydrogenated water, Scripta Mater. 89 (2014) 41-44.   DOI
94 J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37 (1988) 6991-7000.   DOI
95 M.J. Buehler, A.C.T. van Duin, W.A. Goddard, Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field, Phys. Rev. Lett. 96 (2006), 095505-1-095505-4.   DOI
96 P.M. Scott, M. Le Calvar, The Proceedings of the Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors, 1993, pp. 657-665.
97 A. Stratulat, D.E.J. Armstrong, S.G. Roberts, Micro-mechanical measurement of fracture behaviour of individual grain boundaries in Ni alloy 600 exposed to a pressurized water reactor environment, Corros. Sci. 104 (2016) 9-16.   DOI
98 B. Langelier, S.Y. Persaud, A. Korinek, T. Casagrande, R.C. Newman, G.A. Botton, Effects of boundary migration and pinning particles on intergranular oxidation revealed by 2D and 3D analytical electron microscopy, Acta Mater. 131 (2017) 280-295.   DOI
99 R.W. Balluffi, Grain boundary diffusion mechanisms in metals, J. Electron. Mater. 21 (1992) 527-553.   DOI
100 D. Raabe, M. Herbig, S. Sandl€obes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.P. Choi, Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces, Curr. Opin. Solid St. M. S. 18 (2014) 253-261.   DOI
101 M.B. Toloczko, M.J. Olszta, D.K. Schreiber, S.M. Bruemmer, Corrosion and Stress Corrosion Crack Initiation of Cold-worked Alloy 690 in PWR Primary Water, 2013 downloaded from, https://lwrs.inl.gov/Materials%20Aging% 20and%20Degradation/Cold-Worked_Alloy_690_M2LW-13OR0402035.pdf.
102 J.W. Cahn, Diffusion induced grain boundary migration, Scripta Metall. 13 (1979) 503-509.   DOI
103 R.W. Balluffi, J.W. Cahn, Mechanism for diffusion induced grain boundary migration, Acta Metall. 29 (1981) 493-500.   DOI
104 R.W. Balluffi, T. Kwok, P.D. Bristowe, A. Brokman, P.S. Ho, S. Yip, Determination of vacancy mechanism for grain boundary self-diffusion by computer simulation, Scripta Metall. 15 (1981) 951-956.   DOI
105 T. Moss, G.S. Was, Accelerated stress corrosion crack initiation of alloys 600 and 690 in hydrogenated supercritical water, Metall. Mat. Trans. A 48 (2017) 1613-1628.
106 X.Y. Zhong, S.C. Bali, T. Shoji, Accelerated test for evaluation of intergranular stress corrosion cracking initiation characteristics of non-sensitized 316 austenitic stainless steel in simulated pressure water reactor environment, Corros. Sci. 115 (2017) 106-117.   DOI
107 M.J. Buehler, J. Dodson, A.C.T. van Duin, P. Meulbroek, W.A. Goddard, The computational materials design facility (CMDF): a powerful framework for multi-paradigm multi-scale simulations, in: Materials Research Society Symposium Proceedings, 2006 downloaded from, http://web.mit.edu/mbuehler/www/research/CMDF/MRS-proc-2006-CMDF.pdf.
108 M.J. Buehler, T. Ackbarow, Fracture mechanics of protein materials, Mater. Today 10 (2007) 46-58.
109 C. Lorenz, N.L. Doltsinis, Molecule dynamics simulation: from "ab initio" to "coarse grained", in: J. Leszczynski, A. Kaczmarek-Kedziera, T. Puzyn, M.G. Papadopoulos, H. Reis, M.K. Shukla (Eds.), Handbook of Computational Chemistry, Springer International Publishing, 2017, pp. 337-396.
110 S. Keten, M.J. Buehler, Large deformation and fracture mechanics of betahelical protein nanotube: atomistic and continuum modeling, Comp. Method. Appl. M 197 (2008) 3203-3214.   DOI
111 S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758.   DOI
112 T. Allen, J. Busby, M. Meyer, D. Petti, Materials challenges for nuclear systems, Mater. Today 13 (2010) 14-23.
113 M.M. Islam, C.Y. Zou, A.C.T. van Duin, S. Raman, Interactions of hydrogen with the iron and iron carbide interfaces: a ReaxFF molecular dynamics study, Phys. Chem. Chem. Phys. 2 (2016) 761-771.
114 M.L. Rossi, C.D. Taylor, First-principles insights into the nature of zirconiumiodine interactions and the initiation of iodine-induced stress corrosion cracking, J. Nucl. Mater. 458 (2015) 1-10.   DOI
115 G.J. Tainter, G.C. Schatz, Reactive force field modeling of zinc oxide nanoparticle formation, J. Phys. Chem. C 120 (2016) 2950-2961.
116 W. Barrows, R. Dingreville, D. Spearot, Tractioneseparation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations, Mat. Sci. Eng. A 650 (2016) 354-364.   DOI
117 X.Y. Li, H.J. Gao, Atomistic modeling of deformation and failure mechanisms in nanostructured materials, Natl. Sci. Rev. 2 (2015) 133-136.   DOI
118 S. Lozano-Perez, A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis, Micron 39 (2008) 320-328.   DOI
119 W.W. Wang, Z.L. Zhang, X.C. Ren, Y.J. Guan, Y.J. Su, Corrosion product filminduced stress facilitates stress corrosion cracking, Sci. Rep. (2015), https://doi.org/10.1038/srep10579.
120 K. Kruska, S.L. Perez, D.W. Saxey, T. Terachi, T. Yamada, G.D.W. Smith, Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels, Corros. Sci. 63 (2012) 225-233.   DOI
121 S. Lozano-Perez, T. Yamada, T. Terachi, M. Schr€oder, C.A. English, G.D.M. Smith, C.R.M. Grovenor, B.L. Eyre, Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content, Acta Mater. 57 (2009) 5361-5381.   DOI
122 I.I. Novoselov, A.V. Yanilkin, Impact of segregated interstitials on structures and energies of tilt grain boundaries in Mo, Comp. Mater. Sci. 112 (2016) 276-281.   DOI
123 D.R. Alfonso, D.N. Tafen, Simulation of atomic diffusion in the Fcc NiAl system: a kinetic Monte Carlo study, J. Phys. Chem. C 119 (2015) 11809-11817.   DOI
124 M. Ma, G. Tocci, A. Michaelides, G. Aeppli, Fast diffusion of water nanodroplets on graphene, Nat. Mater. 15 (2016) 66-71.   DOI
125 M.I. Mendelev, C. Deng, C.A. Schuh, D.J. Srolovitz, Comparison of molecular dynamics simulation methods for the study of grain boundary migration, Model. Simul. Mater. Sci. Eng 21 (2013), https://doi.org/10.1088/0965-0393/ 21/4/045017.
126 O. Senninger, F. Soisson, E. Martínez, M. Nastar, C.C. Fu, Y. Brechet, Modeling radiation induced segregation in ironechromium alloys, Acta Materialia 103 (2016) 1-11.   DOI
127 S. Lozano-Perez, P. Rodrigo, L.C. Gontard, Three-dimensional characterization of stress corrosion cracks, J. Nucl. Mater. 408 (2011) 289-295.   DOI
128 Y.H. Lu, Q.J. Peng, T. Sato, T. Shoji, An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water, J. Nucl. Mater. 347 (2005) 52-68.   DOI
129 S.M. Bruemmer, L.E. Thomas, High-resolution characterizations of stresscorrosion cracks in austenitic stainless steel from crack growth tests in BWR-simulated environments, in: Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactors, 2005, pp. 189-197 downloaded from, http://iweb.tms.org/NM/NM-0702-5.pdf.
130 M. Meisnar, M. Moody, S.L. Perez, Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels, Corros. Sci. 98 (2015) 661-671.   DOI
131 Y. Behnamian, A. Mostafaei, A. Kohandehghan, B. Zahiri, W.Y. Zheng, D. Guzonas, M. Chmielus, W.X. Chen, J.L. Luo, Corrosion behavior of alloy 316L stainless steel after exposure to supercritical water at 500C for 20,000 h, J. Supercrit. Fluids 127 (2017) 191-199.   DOI
132 C.C.F. Amaral, F. Ormiga, J.A.C.P. Gomes, Electrochemical-induced dissolution of stainless steel files, Int. Endod. J. 48 (2015) 137-144.   DOI
133 J.M. Wang, H. Lu, L.F. Zhang, F.J. Meng, X.L. Xu, Effects of dissolved gas and cold work on the electrochemical behaviors of 304 stainless steel in simulated PWR primary water, Corrosion 73 (2017) 281-289.   DOI
134 Y.J. Kim, P.L. Andresen, Data quality, issues and guidelines for electrochemical corrosion potentials measurement in high-temperature water, Corrosion 59 (2003) 584-596.   DOI
135 D. Sengupta, S. Kwak, A. Vasenkov, Y.K. Shin, A.C.T. van Duin, reportComputational Capabilities for Predictions of Interactions at the Grain Boundary of Refractory Alloys. Project Report, downloaded from: https://www.osti.gov/scitech/biblio/1170170.
136 Y. Mishin, C. Herzig, J. Bernardini, W. Gust, Grain boundary diffusion: fundamentals to recent developments, Int. Mater. Rev. 42 (1997) 155-178.   DOI
137 S. Sarrade, D. Feron, F. Rouillard, S. Perrin, S. Robin, J.C. Ruiz, H.A. Turc, Overview on corrosion in supercritical fluids, J. Supercrit. Fluids 120 (2017) 335-344.   DOI
138 R.W. Balluffi, On measurements of self-diffusion rates along dislocations in F.C.C. metals, Phys. Stat. Sol 42 (1970) 11-34.   DOI
139 N.L. Peterson, Grain-boundary diffusion in metals, Int. Meter. Rev. 28 (1983) 65-91.
140 A.H. King, Diffusion induced grain boundary migration, Int. Mater. Rev. 32 (1987) 173-189.   DOI
141 A. Azizi, X.L. Zou, P. Ercius, Z.H. Zhang, A.L. Eliias, N. Perea-Lopez, G. Stone, M. Terrones, B.I. Yakobson, N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide, Nat. Commun. 4867 (2014) 1-7.
142 K.G.F. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.L. Plimpton, P.M. Derlet, Computing the mobility of grain boundaries, Nat. Mater. 5 (2006) 124-127.   DOI
143 M.J. Buehler, A. Hartmaier, M.A. Duchaineau, F.F. Abraham, H.J. Gao, The dynamical complexity of work-hardening: a large-scale molecular dynamics simulation, Acta Mech. Sinica 21 (2005) 103-111.   DOI
144 Y. Mishin, Chr Herzig, J. Bernardini, W. Gust, Grain boundary diffusion: fundamentals to recent developments, Int. Mater. Rev. 42 (1997) 155-178.   DOI
145 C. Thaulow, D. Sen, M.J. Buehler, Atomistic study of the effect of crack tip ledges on the nucleation of disloations in silicon single crystals at elevated temperature, Mat. Sci. Eng. A 528 (2011) 4357-4364.   DOI
146 M.J. Buehler, Z.P. Xu, Mind the helical crack, Nature 464 (2010) 42-43.   DOI
147 R.O. Ritchie, Failure of silicon: crack formation and propagation, in: 13th Workshop on Crystalline Solar Cell Materials and Processes, August 2003. Vail, Colorado, USA. Downloaded from, http://robotics.eecs.berkeley.edu/-pister/147/SiliconFailureRitchie2003.pdf.
148 G. Bertali, F. Scenini, M.G. Burke, The effect of residual stress on the preferential intergranular oxidation of Alloy 600, Corros. Sci. 111 (2016) 494-507.   DOI
149 P.J. Withers, Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy, Phil. Trans. R. Soc. A 373 (2015) 20130157, https://doi.org/ 10.1098/rsta.2013.0157.   DOI
150 E. Bitzek, J.R. Kermode, P. Gumbsch, Atomistic aspects of fracture, Int. J. Fract 191 (2015) 13-30.   DOI
151 A. Gleizer, G. Peralta, J.R. Kermode, A. De Vita, D. Sherman, Dissociative Chemisorption of O2 inducing stress corrosion cracking in silicon crystals, Phys. Rev. Lett. 112 (2014) 115501 (1-5).   DOI
152 K. Nomura, Y.C. Chen, W.Q. Wang, R.K. Kalia, A. Nakano, P. Vashishta, L.H. Yang, Interaction and coalescence of nanovoids and dynamic fracture in silica glass: multimillion-to-billion atom molecular dynamics simulations, J. Phys. D. Appl. Phys. 42 (2009) 214011 (1-12).   DOI
153 A. King, G. Johnson, D. Engelberg, W. Ludwig, J. Marrow, Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal, Science 321 (2008) 382-385.   DOI
154 M.J. Buehler, F.F. Abraham, H.J. Gao, Hyperelasticity governs dynamic fracture at a critical length scale, Nature 426 (2003) 141-146.   DOI
155 V. Priya, K.K. Rajiv, N. Aiichiro, K. Efthimios, G. Ananth, L. Gang, E. Stephan, V.F. Arthur, H.Q. Rnady, M.A. John, Y.H. Lin, Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking. Project Report of Scientific Discovery Through Advanced Computing (Grant Number: DE-FC02-06ER25788), 2014 downloaded from, https://www.osti.gov/scitech/servlets/purl/1164641.
156 O. Verners, Molecular Dynamics Analysis of Oxidation, Segregation and Stress Corrosion Failure of Refractory Alloys, Ph.D. thesis, The Pennsylvania State University, 2014.
157 T.T. Nguyen, J. Bolivar, J. Rethore, M.C. Baietto, M. Fregonese, A phase field method for modeling stress corrosion crack propagation in a nickel base alloy, Int. J. Solids Struct. 112 (2017) 65-82.   DOI
158 W.G. Hwang, S.G. Bae, J.S. Kim, B.Y. Lee, Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube, Nucl. Eng. Technol. 47 (2015) 454-460.   DOI
159 J.S. Kim, B.Y. Lee, W.G. Hwang, S.S. Kang, The effect of welding residual stress for making artificial stress corrosion crack in the STS 304 pipe, Adv. Mater. Sci. Eng. 2015 (2015) 7, https://doi.org/10.1155/2015/932512. Article ID 932512.
160 M.J. Buehler, H.J. Gao, Dynamical fracture instabilities due to local hyperelasticity at crack tips, Nature 439 (2006) 307-310.   DOI
161 J. Hou, Q.J. Peng, Z.P. Lu, T. Shoji, J.Q. Wang, E.H. Han, W. Ke, Effects of cold working degrees on grain boundary characters and strain concentration at grain boundaries in Alloy 600, Corros. Sci. 53 (2011) 1137-1142.   DOI
162 P. Andresen, SCC of Alloys 152/52/52i Weld Metal in PWR Water (Conference Presentation), Alloy 690/52/152 PWSCC Research Collaboration Meeting, Electric Power Research Institute, Tampa, Florida, USA, December 2-4, 2014.
163 M. Morra, M. Othon, S. McCracken, B. Sutton, A. Ahluwalia, Analysis Narrow Groove 52M Welds SA508 and SA508 to Alloy 690 (Conference Presentation), Alloy 690/52/152 PWSCC Research Collaboration Meeting, Electric Power Research Institute, Tampa, Florida, USA, December 2-4, 2014.
164 S. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Cold-work effects on stress corrosion crack growth in Alloy 690 tubing and plate materials, in: 17th International Conference on Environmental Degradation of Materials in Nuclear Power System-water Reactors, Ottawa, Ontario, Canada, August 9- 12, 2015.
165 S. Bruemmer, M.J. Olszta, N. Overman, M. Toloczko, Cold and warm work effects on stress corrosion crack growth in Alloy 690 materials (conference presentation), in: ICG-EAC Meeting, Ann Arbor, Michigan, USA, May 18-22, 2015 downloaded from, https://www.nrc.gov/docs/ML1514/ML15140A420.pdf.
166 W.Q. Zhang, K.W. Fang, Y.J. Hu, S.Y. Wang, X.L. Wang, Effect of machinginduced surface residual stress on initiation of stress corrosion cracking in 316 austenitic stainless steel, Corros. Sci. 108 (2016) 173-184.   DOI
167 S.M. Bruemmer, M.J. Olszta, N.R. Overman, M.B. Toloczko, Microstructural effects on stress corrosion crack growth in cold-worked alloy 690 tubing and plate materials, in: 16th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-water Reactors, Asheville, North Carolina, USA, 2013 downloaded from, https://www.nrc.gov/docs/ML1322/ML13220A048.pdf.
168 S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, L.E. Thomas, Linking microstructure to stress corrosion cracking of cold rolled alloy 690 in PWR primary water, Corrosion 69 (2013) 953-963.   DOI
169 D. Groen, S.J. Zasada, P.V. Coveney, Survey of multiscale and multiphysics applications and communities, Comput. Sci. Eng. 16 (2013) 34-43.
170 S.J. Plimpton, A.P. Thompson, Computational aspects of many-body potentials, MRS Bull. 37 (2012) 513-521.   DOI