Browse > Article
http://dx.doi.org/10.1016/j.net.2017.07.018

Effects of temperature and solution composition on evaporation of iodine as a part of estimating volatility of iodine under gamma irradiation  

Yeon, Jei-Won (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Jung, Sang-Hyuk (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.49, no.8, 2017 , pp. 1689-1695 More about this Journal
Abstract
As a part of evaluating the volatility of iodide ions subjected to gamma irradiation, $I_2$ evaporation experiments were performed with $I_2$ and $I^-$ mixed solutions in the temperature range $26-80^{\circ}C$ in an open, well-ventilated space. The evaporation of $I_2$ was observed to follow primarily first order kinetics, depending on the $I_2$ concentration. The evaporation rate constant increased rapidly with increase in temperature. The presence of $I^-$ slightly reduced the evaporation rate of $I_2$ by forming relatively stable $I_3^-$. The effect of $Cl^-$ at <1.0 wt% on $I_2$ evaporation was insignificant. The evaporation rate constants of $I_2$ were $1.3{\times}10^{-3}min^{-1}\;cm^{-2}$, $2.4{\times}10^{-2}min^{-1}\;cm^{-2}$, and $8.6{\times}10^{-2}min^{-1}\;cm^{-2}$, at $26^{\circ}C$, $50^{\circ}C$, and $80^{\circ}C$, respectively.
Keywords
Evaporation of iodine; Evaporation rate; Temperature;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E.C. Beahm, C.F. Weber, T.S. Kress, G.W. Parker, Iodine Chemical Forms in LWR Severe Accidents, NUREG/CR-5732, ORNL/TM-11861, US-NRC, ORNL, Oak Ridge (TN), 1992.
2 M.E. Berzal, M.J.M. Crespo, M.S. Kowaiczyk, M.M. Espigares, J.L. Jimenez, State-of-the-art Review on Fission Products Aerosol Pool Scrubbing under Severe Accident Conditions, EUR 16241 EN, Nuclear Science and Technology, EC, 1995.
3 C.B. Ashmore, J.R. Gwyther, H.E. Sims, Some effects of pH on inorganic iodine volatility in containment, Nucl. Eng. Des. 166 (1996) 347-355.   DOI
4 J.C. Wren, J.M. Ball, G.A. Glowa, The chemistry of iodine in containment, Nucl. Technol. 129 (2000) 297-325.   DOI
5 F. Taghipour, G.J. Evans, Radiolytic organic iodide formation under nuclear reactor accident conditions, Environ. Sci. Technol. 34 (2000) 3012-3017.   DOI
6 L. Cantrel, Radiochemistry of iodine outcomes of the caiman program, Nucl. Technol. 156 (2006) 11-28.   DOI
7 N. Girault, S. Dickinson, F. Funke, A. Auvinen, L. Herranz, E. Krausmann, Iodine behaviour under LWR accident conditions: lessons learnt from analyses of the first two Phebus FP tests, Nucl. Eng. Des. 236 (2006) 1293-1308.   DOI
8 B. Clement, L. Cantrel, G. Ducros, F. Funke, L. Herranz, A. Rydl, G. Weber, C. Wren, State of the Art Report on Iodine Chemistry, NEA/CSNI/R(2007)1, OECD-NEA, Paris, 2007.
9 G.V. Buxton, Q.G. Mulazzani, On the hydrolysis of iodine in alkaline solution: a radiation chemical study, Radiat. Phys. Chem. 76 (2007) 932-940.   DOI
10 L. Bosland, F. Funke, N. Girault, G. Langrock, PARIS project: radiolytic oxidation of molecular iodine in containment during a nuclear reactor severe accident. Part 1. Formation and destruction of air radiolysis productseExperimental results and modeling, Nucl. Eng. Des. 238 (2008) 3542-3550.   DOI
11 S.Y. Hong, S.-H. Jung, J.-W. Yeon, Effect of aluminum metal surface on oxidation of iodide under gamma irradiation conditions, J. Radioanal. Nucl. Chem. 308 (2016) 459-468.   DOI
12 S. Dickinson, F. Andreo, T. Karkela, J. Ball, L. Bosland, L. Cantrel, F. Funke, N. Girault, J. Holm, S. Guilbert, L.E. Herranz, C. Housiadas, G. Ducros, C. Mun, J.-C. Sabroux, G. Weber, Recent advances on containment iodine chemistry, Prog. Nucl. Energy 52 (2010) 128-135.   DOI
13 H.-C. Kim, Y.-H. Cho, Raim - a model for iodine behavior in containment under severe accident condition, Nucl. Eng. Technol. 47 (2015) 827-837.   DOI
14 S.-H. Jung, J.-W. Yeon, S.Y. Hong, Y. Kang, K. Song, The oxidation behavior of iodide ion under gamma irradiation conditions, Nucl. Sci. Eng. 181 (2015) 191-203.   DOI
15 C.F. Weber, E.C. Beahm, T.S. Kress, Models of Iodine Behavior in Reactor Containments, ORNL/TM-12202, Oak Ridge National Laboratory, Oak Ridge (TN), 1992.
16 M.J. Polissar, The rate of evaporation of chlorine, bromine, and iodine from aqueous solutions, J. Chem. Educ. 12 (1935) 89-92.   DOI
17 D.D. Macdonald, A.C. Scott, P. Wentrcek, Silver-silver chloride thermocells and thermal liquid junction potentials for potassium chloride solutions at elevated temperatures, J. Electrochem. Soc. 126 (1979) 1618-1624.   DOI
18 J. Ishida, N. Miyagawa, H. Watanabe, T. Asano, Y. Kitahara, Environmental radioactivity around Tokai-works after reactor accident at Chernobyl, J. Environ. Radioact. 7 (1988) 17-27.   DOI
19 K. Hirose, 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactivity deposition monitoring results, J. Environ. Radioact. 111 (2012) 13-17.   DOI
20 I. Lengyel, I.R. Epstein, K. Kustin, Kinetics of iodine hydrolysis, Inorg. Chem. 32 (1993) 5880-5882.   DOI
21 S.-H. Jung, J.-W. Yeon, Y. Kang, K. Song, Determination of triiodide ion concentration using UV-visible spectrophotometry, Asian J. Chem. 26 (2014) 4084-4086.
22 L.E. Herranz, B. Clement, In-containment source term: key insights gained from a comparison between the PHEBUS-FP programme and the US-NRC NUREG-1465 revised source term, Prog. Nucl. Energy 52 (2010) 481-486.   DOI
23 K. Ishigure, H. Shiraishi, H. Okuda, Radiation chemistry of aqueous iodine systems under nuclear reactor accident conditions, Radiat. Phys. Chem. 32 (1988) 593-597.
24 N. Momoshima, S. Sugihara, R. Ichikawa, H. Yokoyama, Atmospheric radionuclides transported to Fukuoka, Japan remote from the Fukushima Dai-ichi nuclear power complex following the nuclear accident, J. Environ. Radioact. 111 (2012) 28-32.   DOI
25 C.-C. Lin, Chemical effects of gamma radiation on iodine in aqueous solutions, J. Inorg. Nucl. Chem. 42 (1980) 1101-1107.   DOI
26 K. Ishigure, H. Shiraishi, H. Okuda, N. Fujita, Effect of radiation on chemical forms of iodine species in relation to nuclear reactor accidents, Radiat. Phys. Chem. 28 (1986) 601-610.
27 J.C. Wren, J. Paquette, S. Sunder, B.L. Ford, Iodine chemistry in the +1 oxidation state. II. A Raman and UV-visible spectroscopic study of the disproportionation of hypoiodite in basic solutions, Can. J. Chem. 64 (1986) 2284-2296.   DOI
28 M. Lucas, Radiolysis of cesium iodide solutions in conditions prevailing in a pressurized water reactor severe accident, Nucl. Technol. 82 (1988) 157-161.   DOI
29 G.P. Baxter, C.H. Hickey, W.C. Holmes, The vapor pressure of iodine, J. Am. Chem. Soc. 29 (1907) 127-136.   DOI
30 D.A. Palmer, R.W. Ramette, R.E. Mesmer, Triiodide ion formation equilibrium and activity coefficients in aqueous solution, J. Solution Chem. 13 (1984) 673-683.   DOI
31 S.E. Jorgensen, Studies in Environmental Science 5: Industrial Waste Water Management, Elsevier Scientific Publishing Company, Amsterdam, Netherlands, 1979.
32 F.E. Jones, Evaporation of Water: with Emphasis on Applications and Measurements, Lewis Publishers, Chelsea (MI), USA, 1992.
33 C.L. Harman, The Solubility of Iodine in Aqueous Salt Solutions, Master's Thesis in Chemistry, Georgia School of Technology, 1932.