Browse > Article
http://dx.doi.org/10.1016/j.net.2016.07.005

Numerical Study on Coolant Flow Distribution at the Core Inlet for an Integral Pressurized Water Reactor  

Sun, Lin (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Peng, Minjun (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Xia, Genglei (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Lv, Xing (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Li, Ren (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
Publication Information
Nuclear Engineering and Technology / v.49, no.1, 2017 , pp. 71-81 More about this Journal
Abstract
When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.
Keywords
Coolant Flow Distribution; Flow Mixing Chamber; Group Operation Strategy; Integral Pressurized Water Reactor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Bae, Y.I. Kim, C.T. Park, CFD analysis of flow distribution at the core inlet of SMART, Nucl. Eng. Des 258 (2013) 19-25.   DOI
2 M.F. Robbe, M. Lepareux, E. Treille, Y. Cariou, Numerical simulation of a hypothetical core disruptive accident in a small-scale model of a nuclear reactor, Nucl. Eng. Des 223 (2003) 159-196.   DOI
3 J.H. Jeong, B.S. Han, Coolant flow field in a real geometry of PWR downcomer and lower plenum, Ann. Nucl. Energy 35 (2008) 610-619.   DOI
4 K.M. Kim, B.I. Lee, H.H. Cho, J.S. Park, Y.J. Chung, Numerical study on thermo-hydrodynamics in the reactor internals of SMART, Nucl. Eng. Des 241 (2011) 2536-2543.   DOI
5 Y.I. Kim, Y. Bae, Y.J. Chung, K.K. Kim, CFD simulation for thermal mixing of a SMART flow mixing header assembly, Ann. Nucl. Energy 85 (2015) 357-370.   DOI
6 B.H. Yan, G. Zhang, H.Y. Gu, CFD analysis of the effect of rolling motion on the flow distribution at the core inlet, Ann. Nucl. Energy 41 (2012) 17-25.   DOI
7 S. Lim, Y. Choi, K. Ha, K. Park, N. Park, Y. Park, K. Jeong, J. Park, Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART, Nucl. Eng. Des 241 (2011) 4079-4088.   DOI
8 K. Min, B. In, D. Lee, H. Hee, K. Hoon, Experimental and numerical study on local pressure distributions in a system-integrated modular reactor, Ann. Nucl. Energy 47 (2012) 216-224.   DOI
9 H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, second ed., Pearson, London, 2007.
10 ANSYS Inc, FLUENT 15.0 user's guide, 2013.
11 P.J. Roache, Perspective: a method for uniform reporting of grid refinement studies, J. Fluids Eng 116 (1994) 405-413.   DOI
12 G.L. Xia, G.H. Su, M.J. Peng, Analysis of flow distribution in plate-type core affected by uneven inlet temperature distribution, Ann. Nucl. Energy 92 (2016) 333-344.   DOI
13 F. Menter, B. Hemstrom, M. Henriksson, R. Karlsson, A. Latrobe, P. Muhlbauer, M. Scheuerer, B. Smith, T. Takacs, S. Willemsen, ECORA Contract No. FIKS-CT-2001-00154 CFD best practice guidelines for CFD code validation for reactor safety applications, 2002, 1-46.
14 U. Rohde, T. Hohne, S. Kliem, B. Hemstrom, M. Scheuerer, T. Toppila, A. Aszodi, I. Boros, I. Farkas, P. Muhlbauer, L. Vyskocil, J. Klepac, J. Remis, T. Dury, Fluid mixing and flow distribution in a primary circuit of a nuclear pressurized water reactor-validation of CFD codes, Nucl. Eng. Des 237 (2007) 1639-1655.   DOI
15 G.L. Xia, Analysis of the Impact of OTSG Grouping Run on Reactor Core Thermal-hydraulic Characteristics, D. Eng. Dissertation, Harbin Engineering University, 2014.
16 M. Andreani, A. Takacs, A. Latrobe, J. Lillington, S. Assurance, Evaluation of Computational Fluid Dynamic Methods for Reactor Safety Analysis Contract FIKS-CT-2001-00154 Review of CFD Applications in Primary Loop and Recommendations FZR, Germany, 2003.
17 D. Bestion, M. Scheuerer, Recommendation on Use of CFD Codes for Nuclear Reactor Safety Analysis Contribution, 2002.
18 M. Scheuerer, M. Heitsch, F. Menter, Y. Egorov, I. Toth, D. Bestion, S. Pigny, H. Paillere, A. Martin, M. Boucker, E. Krepper, S. Willemsen, P. Muhlbauer, M. Andreani, B. Smith, R. Karlsson, M. Henriksson, B. Hemstrom, I. Karppinen, G. Kimber, Evaluation of computational fluid dynamic methods for reactor safety analysis (ECORA), Nucl. Eng. Des 235 (2005) 359-368.   DOI
19 G.L. Xia, M.J. Peng, X. Du, Analysis of load-following characteristics for an integrated pressurized water reactor, Int. J. Energy Res 38 (2014) 380-390.   DOI
20 S.U. Khan, M.J. Peng, Neutronics and thermal hydraulic coupling analysis of integrated pressurized water reactor, Int. J. Energy Res 37 (2013) 1709-1717.   DOI
21 W.Q. Xu, M.J. Peng, Research on ideal steady-state programming control strategy of integral PWR, Chin. J. Nucl. Sci. Eng 30 (2010) 1-8.
22 L. Sun, M. Peng, G. Xia, Study on natural circulation and its transition process for IP200, Trans. Am. Nucl. Soc 111 (2014) 1467-1470.