Browse > Article
http://dx.doi.org/10.1016/j.net.2016.04.009

Computer Modeling, Characterization, and Applications of Gallium Arsenide Gunn Diodes in Radiation Environments  

El-Basit, Wafaa Abd (Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University)
El-Ghanam, Safaa Mohamed (Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University)
Abdel-Maksood, Ashraf Mosleh (Nuclear Materials Authority)
Kamh, Sanaa Abd El-Tawab (Electronics Research Laboratory, Physics Department, Faculty of Women for Arts, Science and Education, Ain-Shams University)
Soliman, Fouad Abd El-Moniem Saad (Nuclear Materials Authority)
Publication Information
Nuclear Engineering and Technology / v.48, no.5, 2016 , pp. 1219-1229 More about this Journal
Abstract
The present paper reports on a trial to shed further light on the characterization, applications, and operation of radar speed guns or Gunn diodes on different radiation environments of neutron or g fields. To this end, theoretical and experimental investigations of microwave oscillating system for outer-space applications were carried out. Radiation effects on the transient parameters and electrical properties of the proposed devices have been studied in detail with the application of computer programming. Also, the oscillation parameters, power characteristics, and bias current were plotted under the influence of different ${\gamma}$ and neutron irradiation levels. Finally, shelf or oven annealing processes were shown to be satisfactory techniques to recover the initial characteristics of the irradiated devices.
Keywords
Domain Excess Field; Gamma Dose; Microwave Oscillator; Mobility; Neutron Fluence; Shelf Annealing; Transferred Electron Devices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Katz, K. LaBel, J.J. Wang, B. Cronquist, R. Koga, S. Penzin, G. Swift, Radiation effects on current field programmable technologies, Nucl. Sci. IEEE Trans. 44 (1997) 1945-1956.   DOI
2 M. Zdravkovic, A. Vasic, B. Cavric, R. Radosavljevic, K. Stankovic, Radiation induced noise level in solar cells, in: PIERS Proceedings, Kuala Lumpur, Malaysia, March 27-30, 2012, pp. 1160-1164.
3 K.G. Naik, S. Bhat, G. Sangeev, The effect of electron irradiation on BJTs and MOSFETs at elevated temperatures, Arch. Phys. Res. 4 (2013) 74-86.
4 D. Nikolic, A. Vasic, I. Fetahovic, K. Stankovic, P. Osmokrovic, Photodiode behavior in radiation environment, Sci. Publ. State Univ. Novi Pazar Ser. A: Appl. Math. Inform. Mech. 3 (2011) 27-34.
5 Z. Pavlovic, I. Manic, S. Golubovic, Effects of $\gamma$-irradiation on electrical characteristics of power VDMOS transistors, Facta Univ. Ser. Phys. Chem. Technol. 2 (2002) 223-233.   DOI
6 K.K. Thornber, Current equations for velocity overshoot, IEEE Electron Device Lett. EDL-3 (1982) 69-71.
7 A. Forster, J. Stock, S. Montanari, M.I. Lepsa, H. Luth, Fabrication and characterisation of GaAs Gunn diode chips for applications at 77 GHz in automotive industry, Sensors 6 (2006) 350-360.   DOI
8 S.I. Domrachev, S.A. Alaverdjan, V.N. Skorokhodov, Application of a Gunn-diode current-pulse generator for modulation of semiconductor lasers, Tech. Phys. 44 (1999) 544-547.   DOI
9 H.W. Thim, Computer study of bulk GaAs devices with random one-dimensional doping fluctuations, J. Appl. Phys. 39 (1968) 3897-3904.   DOI
10 T. Wang, K. Hess, Calculation of the electron velocity distribution in high electron mobility transistors using an ensemble Monte Carlo method, J. Appl. Phys. 57 (1985) 5336-5339.   DOI
11 N. Berg, H. Dropkin, Neutron displacement effects in epitaxial Gunn diodes, IEEE Trans. Nucl. 17 (2007) 233-238.
12 G.E. Brehm, G.L. Pearson, Effects of gamma radiation on Gunn diodes, IEEE Trans. Electron Devices 17 (2005) 475-479.
13 D.J. Widiger, C. Kizilyalli, K. Hess, J.J. Coleman, Twodimensional transient simulation of an idealized high electron mobility transistor, IEEE Trans. Electron. Devices. ED-32 (1985) 1092-1102.
14 L.B. Lin, Z.J. Liao, Q. Liu, T.C. Lu, X.D. Feng, Effect of proton irradiation on electric properties in AlGaAs/GaAs heterostructure materials, Surface and Coatings Technology 158-159 (2002) 737-740.   DOI
15 P.J. Price, On the flow equation in device simulation, J. Appl. Phys. 63 (1988) 4718-4722.   DOI
16 I.C. Kizilyalli, K. Hess, Simplified device equations and transport coefficients for GaAs device modeling, IEEE Trans. Electron Devices 34 (1987) 2352-2354.   DOI
17 R.K. Parida, N.C. Agrawala, G.N. Dash, A.K. Panda, Characteristics of a GaN-based Gunn diode for THz signal generation, J. Semiconductor 33 (2012) 084001-084007.   DOI
18 V. Eremin, Z. Li, Carrier drift mobility study in neutron irradiated high purity silicon, Nucl. Instr. Meth. Phys. Res. A: Accelerators Spectrometers Detectors Assoc. Equip 362 (1995) 338-343.   DOI
19 M.I. Gorlov, D.A. Litvinenko, Annealing of radiation and electrostatic damages in semiconductor devices, Russian Microelectronics 31 (2002) 295-304.   DOI
20 J. Huang, H. Yang, C. Tian, J.R. Dong, H.Y. Zhang, T.Y. Guo, Design and manufacture of planar GaAs Gunn diode for millimeter wave application, Chin. Phys. B 19 (12) (2010) 127203-1-127203-5.   DOI
21 Z. Greenwald, D.W. Woodard, A.R. Calawa, L.F. Eastman, The effect of a high energy injection on the performance of mm wave Gunn oscillators, Solid-State Electronics 31 (1988) 1211-1214.   DOI