Browse > Article
http://dx.doi.org/10.1016/j.net.2015.05.005

MECHANICAL PROPERTIES OF TWO-WAY DIFFERENT CONFIGURATIONS OF PRESTRESSED CONCRETE MEMBERS SUBJECTED TO AXIAL LOADING  

ZHANG, CHAOBI (School of Civil and Hydraulic Engineering, Dalian University of Technology)
CHEN, JIANYUN (School of Civil and Hydraulic Engineering, Dalian University of Technology)
XU, QIANG (School of Civil and Hydraulic Engineering, Dalian University of Technology)
LI, JING (School of Civil and Hydraulic Engineering, Dalian University of Technology)
Publication Information
Nuclear Engineering and Technology / v.47, no.5, 2015 , pp. 633-645 More about this Journal
Abstract
In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress estrain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.
Keywords
Axial loading; Biaxial; Concrete damaged plasticity; Finite element method; Mechanical property; Nuclear power plant; Numerical simulation; Prestressed concrete;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Lee, Shell finite element of reinforced concrete for internal pressure analysis of nuclear containment building, Nucl. Eng. Des. 241 (2011) 515-525.   DOI
2 H. Kwak, J. Kim, Numerical models for prestressing tendons in containment structures, Nucl. Eng. Des 236 (2006) 1061-1080.   DOI
3 C. Freidin, A. Krichevsky, Prestressed concrete containment of nuclear power station with PWR, Nucl. Eng. Des 214 (2002) 173-182.   DOI
4 M. Somayehsadat, P. Anna, P. Mahesh, Nuclear radiation effect on the behavior of reinforced concrete elements, Nucl. Eng. Des 269 (2014) 57-65.   DOI
5 S. Lee, Y. Song, S. Han, Biaxial behavior of plain concrete of nuclear containment building, Nucl. Eng. Des 227 (2004) 143-153.   DOI
6 A. Barbat, M. Cervera, A. Hanganu, C. Cirauqui, E. Onate, Failure pressure evaluation of the containment building of a large dry nuclear power plant, Nucl. Eng. Des 180 (1998) 251-270.   DOI
7 H. Hu, Y. Lin, Ultimate analysis of PWR prestressed concrete containment subjected to internal pressure, Int. J. Pres. Ves. Pip 83 (2006) 161-167.   DOI
8 M. Manjuprasad, S. Gopalakrishnan, A. Rao, Non-linear dynamic response of a reinforced concrete secondary containment shell subjected to seismic load, Eng. Struct 23 (2001) 397-406.   DOI
9 A. Williams, Tests on Large Reinforced Concrete Elements Subjected to Direct Tension, Cement and Concrete Association, University of California, 1986.
10 R. Gilbert, R. Warner, Tension stiffening in reinforcedconcrete slabs, J. Str. Div-ASCE 104 (1978) 1885-1900.
11 K. Fields, P. Bischoff, Tension stiffening and cracking of highstrength reinforced concrete tension members, ACI. Struct. J. 101 (2004) 447-456.
12 E. Wollrab, S. Kulkarni, C. Ouyang, S. Shah, Response of reinforced concrete panels under uniaxial tension, ACI. Struct. J. 93 (1996) 648-657.
13 N. Dawood, H. Marzouk, Experimental evaluation of the tension stiffening behavior of HSC thick panels, Eng. Struct. 33 (2011) 1687-1697.   DOI
14 N. Dawood, H. Marzouk, Cracking and tension stiffening of high-strength concrete panels, ACI. Struct. J. 109 (2012) 21-30.
15 N. Dawood, H. Marzouk, Reinforced concrete panels subjected to uniaxial and biaxial tension, J. Adv. Concr. Technol 8 (2010) 59-73.   DOI
16 S. Rizkalla, L. Hwang, Crack prediction for members in uniaxial tension, ACI. Struct. J. 81 (1984) 572-579.
17 S. Rizkalla, L. Hwang, M. Elshahawi, Transverse reinforcement effect on cracking behavior of RC members, Can. J. Civil. Eng. 10 (1983) 566-581.   DOI
18 S. Simmonds, S. Rizkalla, J. MacGregor, Tests of Wall Segments from Reactor Containments, Department of Civil Engineering, University of Alberta, Canada, 1979.
19 K. Maekawa, H. Okamura, A. Pimanmas, Non-linear Mechanics of Reinforced Concrete, CRC Press, 2003.
20 C. Choi, S. Cheung, Tension stiffening model for planar reinforced concrete members, Comput. Struct. 59 (1996) 179-190.   DOI
21 A. Belarbi, T. Hsu, Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete, ACI. Struct. J. 91 (1994) 465-474.
22 T. Hsu, L. Zhang, Tension stiffening in reinforced concrete membrane elements, ACI. Struct. J. 93 (1996) 108-115.
23 H. Noh, Ultimate strength of large scale reinforced concrete thin shell structures, Thin. Wall. Struct. 43 (2005) 1418-1443.   DOI
24 B. Massicotte, A. Elwi, J. MacGregor, Tension-stiffening model for planar reinforced concrete members, J. Struct. Eng-ASCE 116 (1990) 3039-3058.   DOI
25 M. Christiansen, M. Nielsen, Plane stress tension stiffening effects in reinforced concrete, Mag. Concrete. Res. 53 (2001) 357-365.   DOI
26 Y. Sato, F. Vecchio, Tension stiffening and crack formation in reinforced concrete members with fiber-reinforced polymer sheets, J. Struct. Eng-ASCE 129 (2003) 717-724.   DOI
27 A. Gupta, S. Maestrini, Tension-stiffness model for reinforced-concrete bars, J. Struct. Eng-ASCE 116 (1990) 769-790.   DOI
28 J. Cho, N. Kim, N. Cho, Y. Choun, Stress-strain relationship of reinforced concrete subjected to biaxial tension, ACI. Struct. J. 101 (2004) 202-208.
29 J. Cho, N. Kim, N. Cho, I. Choi, Cracking behavior of reinforced concrete panel subjected to biaxial tension, ACI. Struct. J. 101 (2004) 76-84.
30 ACI Committee 224, Cracking of Concrete Members in Direct Tension, ACI 224.2R-92, American Concrete Institute, Detroit, 1992.
31 J. Mazars, G. Pijaudiercabot, Continuum damage theory application to concrete, J. Eng. Mech-ASCE 115 (1989) 345-365.   DOI
32 J. Lubliner, J. Oliver, S. Oller, E. Onate, A plastic-damage model for concrete, Int. J. Solids Struct. 25 (1989) 299-326.   DOI
33 J.H. Lee, G. Fenves, Plastic-damage model for cyclic loading of concrete structures, J. Eng. Mech-ASCE 124 (1998) 892-900.   DOI
34 D. Krajcinovic, Continuum damage mechanics, Appl. Mech. Rev. 37 (1984) 1-6.
35 A. Dragon, Z. Mroz, A continuum model for plastic-brittle behaviour of rock and concrete, Int. J. Eng. Sci. 17 (1979) 121-137.   DOI
36 J. Zhang, J. Yang, Z. Liang, Y. Zhang, 3D numerical research on failure process of reinforced concrete specimen under uniaxial tension, J. Liaoning Tech. Univ. 26 (2007) 700-702.
37 S. Murakami, N. Ohno, A Continuum Theory of Creep and Creep Damage, Creep in Structures, Springer, 1981.
38 M.Wang, J. Chen, S. Fan, S. Lv, Experimental study on high gravity damstrengthened with reinforcement for seismic resistanceonshaking table, Struct. Eng. Mech. 51 (2014) 663-683.   DOI
39 J. Chen, M. Wang, S. Fan, Experimental investigation of small-scaled model for powerhouse dam section on shaking table, Struct. Control Hlth 20 (2013) 740-752.   DOI
40 J. Fu, X. Du, J. Zhang, Mechanical properties of large-size high-strength reinforced concrete columns under axial compression, Building Struct. 43 (2013) 77-81.
41 Comite Euro-International Du Beton, CEB-FIP Model Code 1990, Comite Euro-Internationale du Beton et Federation Internationale de la Procontrainte, Lausanne, Switzerland, 1990.
42 H. Toshihiko, G. Masashi, H. Toshiyasu, K. Minoru, K. Takahiro, M. Tsutomu, A. Hiroshi, T. Katsuki, A. Hiroshi, Seismic proof test of a reinforced concrete containment vessel (RCCV) Part 1: test model and pressure test, Nucl. Eng. Des 235 (2005) 1335-1348.   DOI
43 L. Elfgren, K. Noghabai, RILEM TC 147-FMB. Tension of Reinforced Concrete Prisms. Division of Structural Engineering, Lulea University of Technology, Sweden, 2001.