Browse > Article
http://dx.doi.org/10.5516/NET.07.2013.706

IRRADIATION EFFECTS OF HT-9 MARTENSITIC STEEL  

Chen, Yiren (Nuclear Engineering Division, Argonne National Laboratory)
Publication Information
Nuclear Engineering and Technology / v.45, no.3, 2013 , pp. 311-322 More about this Journal
Abstract
High-Cr martensitic steel HT-9 is one of the candidate materials for advanced nuclear energy systems. Thanks to its excellent thermal conductivity and irradiation resistance, ferritic/martensitic steels such as HT-9 are considered for in-core applications of advanced nuclear reactors. The harsh neutron irradiation environments at the reactor core region pose a unique challenge for structural and cladding materials. Microstructural and microchemical changes resulting from displacement damage are anticipated for structural materials after prolonged neutron exposure. Consequently, various irradiation effects on the service performance of in-core materials need to be understood. In this work, the fundamentals of radiation damage and irradiation effects of the HT-9 martensitic steel are reviewed. The objective of this paper is to provide a background introduction of displacement damage, microstructural evolution, and subsequent effects on mechanical properties of the HT-9 martensitic steel under neutron irradiations. Mechanical test results of the irradiated HT-9 steel obtained from previous fast reactor and fusion programs are summarized along with the information of irradiated microstructure. This review can serve as a starting point for additional investigations on the in-core applications of ferritic/martensitic steels in advanced nuclear reactors.
Keywords
High-Cr Martenistic steels; HT-9; Irradiation Effects; Radiation Damage; Irradiation Embrittlement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Toloczko, M. B., D. S. Gelles, F. A. Garner, R. J. Kurtz, K. Abe, "Irradiation creep and swelling from 400 to $600^{\circ}C$ of the oxide dispersion strengthened ferritic alloy MA957", J. Nucl. Mater. 329-333 (2004) 352.   DOI   ScienceOn
2 Grossbeck, M. L., L. T. Gibson, S. Jitsukawa, "Irradiation creep in austenitic and ferritic steels irradiated in a tailored neutron spectrum to induce fusion reactor levels of helium"J. Nucl. Mater. 233-237 (1996) 148.   DOI   ScienceOn
3 James, L. A., "Fatigue-Crack Propagation Behavior of HT-9 Steel," J. Nucl. Mater., 149(1987):138-142.   DOI   ScienceOn
4 Grossbeck, M. L., Vitek, J. M., and Liu, K. C., "Fatigue Behavior of Irradiated Helium-Containing Ferritic Steels for Fusion Reactor Applications" J. Nucl. Mater., Vol. 141-143, 1986, pp. 966-972.   DOI   ScienceOn
5 Byun, T. S., W. Ds. Lewis, M. B. Toloczko, S. A. Maloy, "Impact properties of irradiated HT9 from the fuel duct of FFTF," J. Nucl. Mater., 421(2012):104:111.   DOI   ScienceOn
6 Huang, F. and M. L. Hamilton, "The fracture toughness database of ferritic alloys irradiated to very high neutron exposure", J. Nucl. Mater. 187 (1992) 278   DOI   ScienceOn
7 Byun, T. S., M. B. Toloczko, T. A. Saleh, S. A. Maloy, "Irradiation dose and temperature dependence of fracture toughness in high dose HT9 steel from the fuel duct of FFTF," J. Nucl. Mater., 432(2013): 1-8.   DOI   ScienceOn
8 Klueh, R.L., N. Hashimoto, M.A., Sokolov, K. Shiba, S. Jitsukawa, "Mechanical properties of neutron-irradiated nickel-containing martensitic steels: I. Experimental study", 357 (2006) 156-168.   DOI   ScienceOn
9 Klueh, R.L., N. Hashimoto, M.A., Sokolov, P.J. Maziasz, K. Shiba, S. Jitsukawa, "Mechanical properties of neutron-irradiated nickel-containing martensitic steels: II. Review and analysis of helium-effect studies", J. Nucl. Mater, 357 (2006) 169-182.   DOI   ScienceOn
10 Rowcliffe, A.F., J.P. Robertson, R.L. Klueh, K. Shiba, D. J. Alexander, M. L. Grossbeck and S. Jitsukawa, "Fracture toughness and tensile behavior of ferritic-martensitic steels irradiated at low temperatures", J. Nucl. Mater. 258-263 (1998) 1275.   DOI   ScienceOn
11 Maloy, S.A., M. B. Tolocako, K.J. McClellan, T. Romero, Y. Kohno, F.A. Garner, R.J. Kurtz and A. Kimura, "The effects of fast reactor irradiation conditions on the tensile properties of two ferritic/martensitic steels", J. Nucl. Mater. 356 (2006) 62.   DOI   ScienceOn
12 Klueh, R. L., "Irradiation Effects on Tensile Properties of High-Chromium Ferritic/Martensitic Steels," DOE/ER-0313/35 - Vol. 35, Semiannual Progress Report, Dec. 31, 2003, pp.73-79.
13 Robertson, J.P., R.L. Klueh, K. Shiba and A.F. Rowcliffe, "Radiation hardening and deformation behavior of irradiated ferritic-martensitic Cr-steels", in Fusion Materials Semi ann. Prog. Report for period ending Dec. 31 1997, DOE/ER-0313/23, Oak Ridge National Lab, 1997, pp. 179-187.
14 Maloy, S. A., M. Toloczko, J. Cole, T. S. Byun, "Core materials development for the fue cycle R&D program," J. Nucl. Mater. 415 (2011) 302-305.   DOI   ScienceOn
15 Woo, C. H., B.N. Singh, and A.A. Semenov, "Recent advances in the understanding of damage production and its consequences on void swelling, irradiation creep and growth," J. Nucl. Mater., 239 (1996): 7-23.   DOI   ScienceOn
16 Bullough, R., and M.R. Hayns, "The temperature dependence of irradiation creep," J. Nucl. Mater., 65 (1977): 184-191   DOI   ScienceOn
17 Wolfer, W. G., "Correlation of radiation creep theory with experimental evidence," J. Nucl. Mater., 90 (1980): 175-192   DOI   ScienceOn
18 Woo, C. H., and F.A. Garner, "A SIPA-based theory of irradiation creep in the low swelling rate regime," J. Nucl. Mater., 191-194 (1992): 1309-1312.   DOI   ScienceOn
19 Boltax, A., J.P. Foster, R.A. Weiner, A. Biancheria, "Void swelling and irradiation creep relationships," J. Nucl. Mater., 65(1977): 174-183   DOI   ScienceOn
20 Garner, F. A., "Irradiation Performance of Cladding and Structural Steels in Liquid Metal Reactors," Materials Science and Technology - A Comprehensive Treatment, Ed. R.W. Cahn, P. Haasen, E. J. Kramer, 1994.
21 Paxton, M. M., B. A. Chin, E. R. Gilbert, R. E. Nygren, "Comparison of the in-reactor creep of selected ferritic, solid solution strengthened, and precipitation hardened commercial alloys", J. Nucl. Mater. 80 (1979) 144.   DOI   ScienceOn
22 Paxton, M. M., B. A. Chin, E. R. Gilbert, "The in-reactor creep of selected ferritic, solid solution strengthened, and precipitation hardened alloys", J. Nucl. Mater. 95 (1980) 185.   DOI   ScienceOn
23 Chin, B. A., in Topical Conference on Ferritic Steels for Use in Nuclear Energy Technologies, Eds. J. W. Davis, D. J. Michel (The Metallurgical Society of AIME, Warrendale, PA, 1984) 593.
24 Toloczko, M. B., F. A. Garner, "Stress and temperature dependence of irradiation creep of selected FCC and BCC steels at low swelling" Fusion Materials Program Semiannula Progress Report, (2002) p. 73.
25 Wong, K. L., J. H. Shim, and B. D. Wirth, "Molecular dynamics simulations of point defect interactions in Fe-Cr alloys," Journal of nuclear materials 367 (2007): 276-281.
26 Wollenberger, H., "Phase transformation under irradiation", J. Nucl. Mater., 216 (1994) pp. 63-77   DOI   ScienceOn
27 Okamoto, P.R. and L.E. Rehn, "Radiation-induced segregation in binary and ternary alloys", J. Nucl. Mater., 83 (1979) pp.2-23   DOI   ScienceOn
28 Was, G. S., J. P. Wharry, B. Frisbie, B. D. Wirth, D. Morgan, J. D. Tucker, and T. R. Allen, "Assessment of radiationinduced segregation mechanisms in austenitic and ferritic-martensitic alloys," Journal of Nuclear Materials 411, no. 1 (2011): 41-50.   DOI   ScienceOn
29 Maziasz, P.J., "Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels", J. Nulc. Mater., 169 (1989) pp.95-115   DOI   ScienceOn
30 Klueh, R.L. and D.R. Harries, "High-Chromium Ferritic and Martensitic Steels for Nuclear Applicaitons", ASTM, West Conshohocken, PA.
31 Maziasz, P.J., R.L. Klueh and J.M. Vitek, "Helium effects on void formation in 9Cr-1MoVNb and 12Cr-1MoVW irradiated in HFIR", J. Nucl. Mater., 141-143 (1986) pp. 929-937   DOI   ScienceOn
32 Anderoglu, O., J. Van den Bosch, P. Hosemann, E. Stergar, B. H. Sencer, D. Bhattacharyya, R. Dickerson, P. Dickerson, M. Hartl, and S. A. Maloy, "Phase stability of an HT-9 duct irradiated in FFTF," Journal of Nuclear Materials, 430 (2012): 194-204.   DOI   ScienceOn
33 Gelles, D. S., L. E. Thomas, "Effects of neutron irradiation on microstructure in experimental and commercial ferritic alloys," Ferritic Alloys for Use in Nuclear Energy Technologies, Eds, J. W. Davis, and D. J. Michel, Met. Soc. AIME, 1984, 559.
34 Maziasz, P. J., Materials for Nuclear Reactor Core Applications, Vol. 2, British Nuclear Energy Society, 1988, 61.
35 Toloczko, M.B. and F.A. Garner, "Irradiation creep and void swelling of two LMR heats of HT9 at ${\sim}400^{\circ}C$ and 165 dpa", J. Nucl. Mater., 233-237 (1996) 289-292.   DOI   ScienceOn
36 Hirth, J. P. and J. Lothe, Theory of Dislocations, 2nd Ed., Krieger Publishing Company, Malabar, Florida, 1992.
37 Heald, P. T., "Preferential Trapping of Interstitials at Dislocations," Phil. Mag., 31, 3 (1975) 551.   DOI   ScienceOn
38 Gittus, J., Irradiation effects in crystalline solids, Applied Science Publishers LTD., London, 1978.
39 Garner, F. A., M. B. Toloczko, B. H. Sencer, "Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure", J. Nucl. Mater. 276 (2000) 123.   DOI   ScienceOn
40 Toloczko, M. B., F. A. Garner, C. R. Eiholzer, "Irradiation creep and swelling of the US fusion heats of HT9 and 9Cr-1Mo to 208 dpa at ${\sim}400^{\circ}C$" J. Nucl. Mater. 212-215 (1994) 604.   DOI   ScienceOn
41 Toloczko, M. B., F. A. Garner, C. R. Eiholzer, "Irradiation creep of various ferritic alloys irradiated at ${\sim}400^{\circ}C$ in the PFR and FFTF reactors" J. Nucl. Mater. 258-263 (1998) 1163.   DOI   ScienceOn
42 Dubuisson, P., D. Gilbon and J. L. Seran, "Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phenix", J. Nucl. Mater., 205 (1993) 178-189   DOI   ScienceOn
43 Kluek, R.L., "Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors", International Materials reviews, Vol. 50, No.5, 2005, pp287- 310.   DOI   ScienceOn
44 Stiegler, J. O. and L.K. Mansur, Ann. Rev. Mater. Sci., "Radiation effects in structural materials", 1979. 9. pp.405-454
45 Masuyama, F., "History of power plants and progress in heat resistant steels," ISIJ internaltional, 41.6 (2001): 621-625.
46 Gelles, D. S., "Effects of irradiation on low activation ferritic alloys: a review," Reduced Activation Materials for Fusion Reactors, R. L. Klueh, D. S. Gelles, M. Okada, and N. H. Packin, Eds., Amer. Soc. for Testing and Materials, Philadelphia (1990): 113.
47 Grossbeck, M. L., L. K. Mansur, "Low-temperature irradiation creep of fusion reactor structural materials" J. Nucl. Mater. 179-181 (1991): 130.   DOI   ScienceOn
48 Strang, A., and V. Vodarek, "The effects of microstructural stability on the creep properties of high temperature martensitic 12 Cr steels," 7th International Conference on Creep and Fracture of Engineering Materials and Structures, 1997.
49 Robinson, M.T., "Basic physics of radiation damage production", J. Nucl. Mater., 216(1994): 1-28.   DOI   ScienceOn
50 Greenwood, L. R., "Neutron Interactions and Atomic Recoil Spectra," J. Nucl. Mater., 216 (1994): 29-44   DOI   ScienceOn
51 Averback, A.S., "Atomic displacement processes in irradiated metals", J. Nucl. Mater., 216(1994): 49-62   DOI   ScienceOn
52 Norgett, M.J., M.T. Robinson and I.M. Torrens, "A proposed method of calculating displacement dose rates", Nuclear Engineering and Design, 33 (1975) pp. 50-54   DOI   ScienceOn
53 Mansure, L.K., "Theory and experimental background on dimensional changes in irradiated alloys", 216 (1994): 97-123.   DOI   ScienceOn
54 Jenkins, M.L., "Characterization of radiation-damage microstructures by TEM", J. Nucl. Mater., 216 (1994):124-156   DOI   ScienceOn
55 Eyre, B. L., A. F. Bartlett, "An Electron Microscope Study of Neutron Irradiation Damage in Alpha-iron," Phil. Mag., 12,116 (1965):261   DOI   ScienceOn
56 Kai, J.J. and G.L. Kulcinshi, "14 MeV nickel-ion irradiated HT-9 ferritic steel with and without helium pre-implantation", J. Nucl. Mater., 175 (1990) pp. 227-236   DOI   ScienceOn
57 Hashimoto, N., J. P. Robertson, and K. Shiba, "Microstructure of Isotopically-tailored Martensitic steel HT9 Irradiated at 400C to 7 dpa in HFIR," DOE/ER-0313/26 - Vol. 26, Semiannual Progress Report, June 30, 1999, pp.96-101.
58 Kai, J.J. and R.L. Klueh, "Microstructural analysis of neutronirradiated martensitic steels", J. Nucl. Mater., 230(1996) pp. 116-123   DOI   ScienceOn
59 Sencer, B.H., J.R. Kennedy, J.I. Cole, S.A. Maloy, F.A. Garner, "Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at $443^{\circ}C$," J. of Nucl. Mater., 393(2) (2009): 235-241.   DOI   ScienceOn
60 Kalwa, G., K. Haarmann, and J.K. Janssen, in: Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, Eds. J.W Davis and D.J. Michel (Met Soc. AIME, Warrendale, PA, 1984) 235.
61 Klueh, R.L. and D.J. Alexander, "Heat treatment effects on impact toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated to 100 dpa", J. Nucl. Mater., 253-258(1998) 1269-1274.
62 Gelles, D. S., "Development of Martensitic Steels for High Neutron Damage Applications," J. Nucl. Mater., 239 (1996): 99-106.   DOI   ScienceOn
63 Ghoniem, N. M., J. Blink, and N. Hoffman, "Selection of alloy steel type for fusion power plant applications in the 350-500C range," Proc. of the Topical Conf. on Ferritic Alloys for Use in Nuclear Technology, Snowbird, Utah. 1983.
64 Gilbon, D. and C. Rivera, "Behavior of different ferritic steels under ion, electron and fast neutron irradiation", J. Nucl. Mater., 155-157 (1988) pp.1268-1273   DOI   ScienceOn
65 Garner, F.A. and R.J. Puigh, "Irradiation creep and swelling of the fusion heats of PCA, HT9 and 9Cr-1Mo irradiated to high neutron fluence", J. Nucl. Mater., 179-181 (1991) 577-580.   DOI   ScienceOn
66 Allen, T. R, J. T. Busby, R. L. Klueh, S. A. Maloy, and M. B. Toloczko, "Cladding and duct materials for advanced nuclear recycle reactors," JOM 60, no. 1 (2008): 15-23.   DOI