Browse > Article
http://dx.doi.org/10.5516/NET.2008.40.7.527

THE IMPORTANCE OF PATIENT-SPECIFIC DOSE CALCULATIONS IN NUCLEAR MEDICINE  

Stabin, Michael G. (RADAR Inc. and Vanderbilt University, Department of Radiology and Radiological Sciences)
Publication Information
Nuclear Engineering and Technology / v.40, no.7, 2008 , pp. 527-532 More about this Journal
Abstract
As therapeutic uses of radionuclides in nuclear medicine increases, the use of patient-specific methods for calculation of radiation dose becomes more important. In this manuscript basic methods and resources for internal dose calculations are outlined, with a focus on how current changes and advances are making more accurate and detailed, patient-individualized dose calculations possible. Most current resources make use of standardized models of the human body representing median individuals, but the use of image-based and more realistic models will soon take their place, and will permit adjustments to represent individual patients and tailor therapy planning uniquely for each subject.
Keywords
Radiation Dosimetry; Nuclear Medicine; Patient Safety; Therapy;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 M.G. Stabin, R. Blackwell, R.L. Brent, E. Donnelly, V.A. King, K. Lovins, M. Stovall. Fetal Radiation Dose Calculations. ANSI N13.54-2008, American National Standards Institute, Washington, DC (2008)
2 United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report to the General Assembly, United Nations Scientific Committee on the Effects of Atomic Radiation (2000)
3 T. Carlier, P.Y. Salaun, M.B. Cavarec, F. Valette, A. Turzo, M. Bardies, Y. Bizais, O. Couturier. Optimized radioiodine therapy for Graves' disease: Two MIRD-based models for the computation of patient-specific therapeutic I-131 activity. Nuclear Medicine Communications 27(7) 559-566 (2006)   DOI   ScienceOn
4 C. Kobe, W. Eschner, F. Sudbrock, I. Weber, K. Marx, M. Dietlein, H. Schicha. 'Graves' disease and radioiodine therapy: Is success of ablation dependent on the achieved dose above 200 Gy' Nuklearmedizin, 47:14, (2007)
5 K. K. Matthay, C. Panina, J. Huberty, D. Price, D. V. Glidden, H. R. Tang, R. A. Hawkins, J. Veatch, B. Hasegawa. 'Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma. treated with I-131-MIBG', Journal of Nuclear Medicine, 42(11):1713-1721 (2001)
6 M. J. Guy, G. D. Flux, P. Papavasileiou, M. A. Flower, R. J. Ott. RMDP: A dedicated package for I-131 SPECT quantification, registration and patient-specific dosimetry, Cancer Biotherapy and Radiopharmaceuticals, 18(1): 61- 69, (2003)   DOI   ScienceOn
7 C. Canzi, F. Zito, F. Voltini, E. Reschini, P. Gerundini. Verification of the agreement of two dosimetric methods with radioiodine therapy in hyperthyroid patients. Medical Physics 33(8) 2860-2867 (2006)   DOI   ScienceOn
8 M.G. Stabin and J. A. Siegel. Physical Models and Dose Factors for Use in Internal Dose Assessment. Health Physics, 85(3):294-310 (2003)   DOI   ScienceOn
9 J.P. Segars. Development and Application of the New Dynamic NURBS-based Cardiac-Torso (NCAT) Phantom, Ph.D. Dissertation, The University of North Carolina (2001)
10 Y. K. Dewaraja, S.J. Wilderman, M. Ljungberg, K.F. Koral, K. Zasadny, M. S. Kaminiski. Accurate Dosimetry in 131I Radionuclide Therapy Using Patient-Specific, 3-Dimensional Methods for SPECT Reconstruction and Absorbed Dose Calculation. J. Nucl. Med. 2005 46: 840-849 (2005)
11 W. Snyder, M. Ford, G. Warner. Estimates of specific absorbed fractions for photon sources uniformly distributed in various organs of a heterogeneous phantom. MIRD Pamphlet No. 5, revised, Society of Nuclear Medicine, New York (1978)
12 M. Cremonesi, M. Ferrari, M. Chinol, M. Bartolomei, M.G. Stabin, E. Sacco, M. Fiorenza, G. Tosi, G. Paganelli. 'Dosimetry in radionuclide therapies with Y-90-conjugates: the IEO experience', Quarterly Journal of Nuclear Medicine, vol. 44, no. 4, pp. 325-332, 2000
13 M. G. Stabin, R. B. Sparks, E. Crowe. OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine. J Nucl Med 46 1023-1027 (2005)
14 L. Bouchet, W. Bolch, D. Weber, H. Atkins, J. Poston, Sr. MIRD Pamphlet No 15: Radionuclide S values in a revised dosimetric model of the adult head and brain. J Nucl Med 40:62S-101S (1999)
15 M.G. Stabin Internal Radiation Dosimetry. Nuclear Medicine, 2nd Ed., Vol 1, Chapter 22, 313-331, edited by RE Henkin, D Bova, GL Dillahay, JR Halema, SM Karesh, RH Wagner, AM Zimmer. Mosby, St. Louis, MO (2006)
16 E. E. Furhang, S. M. Larson, P. Buranapong, J. L. Humm. 'Thyroid cancer dosimetry using clearance fitting', Journal of Nuclear Medicine, 40(1):131-136 (1999)
17 Barone R., Walrand S., Valkema R., Kvols L., Smith C., Krenning E. P., Jamar F., & Pauwels S. 'Correlation between acute red marrow (RM) toxicity and RM exposure during Y-90-SMT487 therapy', Journal of Nuclear Medicine, 43(5):1267 (2002).
18 M. Cristy and K. Eckerman.Specific absorbed fractions of energy at various ages from internal photons sources. ORNL/TM-8381 V1-V7. Oak Ridge National Laboratory, Oak Ridge, TN (1987)
19 R. L. Wahl, S. Kroll, K. R. Zasadny. 'Patient-specific whole-body dosimetry: Principles and a simplified method for clinical implementation', Journal of Nuclear Medicine, 39(8):14S-20S (1998)
20 I. Clairand, M. Ricard, J. Gouriou, M. Di Paola, B. Aubert. DOSE3D: EGS4 Monte Carlo code-based software for internal radionuclide dosimetry. J. Nucl. Med. 40: 1517-1523 (1999)
21 K.S. Kolbert, G. Sgouros, A.M. Scott, J.E. Bronstein, R.A. Malane, J. Zhang, H. Kalaigian, S. McNamara, L. Schwartz, S.M. Larson. Implementation and evaluation of patientspecific three-dimensional internal dosimetry. J. Nucl. Med. 38: 301-308 (1997)
22 M. Stabin, E. Watson, M. Cristy, J. Ryman, K. Eckerman, J. Davis, D. Marshall., K. Gehlen. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy. ORNL Report ORNL/TM-12907 (1995)
23 M.G. Stabin, M. Konijnenberg. Re-evaluation of absorbed fractions for photons and electrons in small spheres. J Nucl Med 41:149-160 (2000)
24 G. Sgouros, K.S. Kolbert, A.Sheikh, K.S. Pentlow, E.F. Mun, A.Barth, R.J. Robbins, S.M. Larson. Patient-Specific Dosimetry for 131I Thyroid Cancer Therapy Using 124I PET and 3-Dimensional-Internal Dosimetry (3D-ID) Software. J Nucl Med 45: 1366-1372, (2004)
25 J. Lehmann, C. Hartmann Siantar, D.E. Wessol, C.A. Wemple, D. Nigg, J. Cogliati, T. Daly, M.A. Descalle, T. Flickinger, D. Pletcher, G. Denardo. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system. Phys Med Biol. Mar 7;50(5):947-958 (2005)   DOI   ScienceOn
26 International Commission on Radiological Protection. ICRP Publication 53: Radiation Dose to Patients from Radiopharmaceuticals, 53, Pergamon, New York (1989)
27 G. A. Wiseman, C. A. White, R. B. Sparks, W. D. Erwin, D. A. Podoloff, D. Lamonica, N. L. Bartlett, J. A. Parker, W. L. Dunn, S. M. Spies, R. Belanger, T. E. Witzig, B. R. Leigh. 'Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin (TM) radioimmunotherapy for low-grade, follicular, or transformed B- cell non-Hodgkin's lymphoma', Critical Reviews in Oncology Hematology, 39(1-2):181-194 (2001)   DOI   ScienceOn
28 M.G. Stabin. A Model of the Prostate Gland for Use in Internal Dosimetry. J Nucl Med 35(3):516-520 (1994)
29 C. A. Hoefnagel. 'Nuclear medicine therapy of neuroblastoma', Quarterly Journal of Nuclear Medicine, 43 (4):336-343 (1999)
30 H. R. Maxon, S. R. Thomas, R. C. Samaratunga. 'Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer', Thyroid, 7(2):183-187, (1997)   DOI   ScienceOn
31 A. Liu, L. Williams, G. Lopatin, D. Yamauchi, J. Wong, A. Raubitschek. A radionuclide therapy treatment planning and dose estimation system. J Nucl Med 40:1151-1153 (1999)
32 M.G. Stabin The Case for Patient-Specific Dosimetry in Radionuclide Therapy. Cancer Biotherapy & Radiopharmaceuticals, 23 (3): 273-284 (2008)   DOI   ScienceOn
33 M. N. Gaze, Y. C. Chang, G. D. Flux, R. J. Mairs, F. H. Saran, S. T. Meller. 'Feasibility of dosimetry-based highdose I-131-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma', Cancer Biotherapy and Radiopharmaceuticals, 20(2):195-199 (2005)   DOI   ScienceOn
34 E.E. Watson, M.G. Stabin, J.L. Davis, K.F. Eckerman. A Model of the Peritoneal Cavity for Use in Internal Dosimetry. J Nucl Med 30:2002-2011 (1989)
35 L.G. Bouchet, W.E. Bolch, H.P. Blanco, B.W. Wessels, J.A. Siegel, D.A. Rajon, I. Clairand, G. Sgouros. MIRD Pamphlet No. 19: Absorbed Fractions and Radionuclide S Values for Six Age-Dependent Multiregion Models of the Kidney. J. Nucl. Med. 44: 1113-1147 (2003)
36 International Commission on Radiological Protection. Radiation Dose To Patients From Radiopharmaceuticals. ICRP Publication 80, Pergamon, New York (2000)