Browse > Article
http://dx.doi.org/10.5140/JASS.2020.37.3.171

Determination of Orbital Elements and Ephemerides using the Geocentric Laplace's Method  

Espitia, Daniela (Grupo de Investigacion en Astroingenieria Alfa Orion, Observatorio Astronomico, Universidad Tecnologica de Pereira)
Quintero, Edwin A. (Grupo de Investigacion en Astroingenieria Alfa Orion, Observatorio Astronomico, Universidad Tecnologica de Pereira)
Arellano-Ramirez, Ivan D. (Grupo de Investigacion en Astroingenieria Alfa Orion, Observatorio Astronomico, Universidad Tecnologica de Pereira)
Publication Information
Journal of Astronomy and Space Sciences / v.37, no.3, 2020 , pp. 171-185 More about this Journal
Abstract
This paper presents a methodology for Initial Orbit Determination (IOD) based on a modification of the Laplace's geocentric method. The orbital elements for Near-Earth asteroids (1864) Daedalus, 2003 GW, 2019 JA8, a Hungaria-type asteroid (4690) Strasbourg, and the asteroids of the Main Belt (1738) Oosterhoff, (2717) Tellervo, (1568) Aisleen and (2235) Vittore were calculated. Input data observations from the Minor Planet Center MPC database and Astronomical Observatory of the Technological University of Pereira (OAUTP; MPC code W63) were used. These observations cover observation arcs of less than 22 days. The orbital errors, in terms of shape and orientation for the estimated orbits of the asteroids, were calculated. The shape error was less than 53 × 10-3 AU, except for the asteroid 2019 JA8. On the other hand, errors in orientation were less than 0.1 rad, except for (4690) Strasbourg. Additionally, we estimated ephemerides for all bodies for up to two months. When compared with actual ephemerides, the errors found allowed us to conclude that these bodies can be recovered in a field of vision of 95' × 72' (OAUTP field). This shows that Laplace's method, though simple, may still be useful in the IOD study, especially for observatories that initiate programs of minor bodies observation.
Keywords
asteroids; astrometry; ephemerides; initial orbit determination; laplace method; orbital errors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aristova EY, Aushev AA, Baranov VK, Belov IA, Bel'kov SA, et al., Laser simulations of the destructive impact of nuclear explosions on hazardous asteroids, J. Exp. Theor. Phys. 126, 132-145 (2018). https://doi.org/10.1134/S1063776118010132   DOI
2 Bowell E, A new protocol for the operation of the minor planet center, in AAS/Division for Planetary Sciences Meeting, Sep 1999.
3 Curtis HD, Orbital Mechanics for Engineering Students: Aerospace Engineering (Elsevier Science, San Diego, CA, 2014).
4 Danby J, Fundamentals of Celestial Mechanics (Macmillan, New York, NY, 1962).
5 Gauss C, Theoria motus corporum coelestium in sectionibus conicis solem ambientium (Sumtibus F. Perthes et I. H. Besser, Hamburg, 1809).
6 Gauss KF, Davis CH, Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections (Dover Publications, New York, NY, 2004).
7 Gronchi GF, Classical and modern orbit determination for asteroids, Proceedings of the International Astronomical Union, 2004 (IAUC196), 293-303 2004.
8 Gronchi GF, Dimare L, Milani A, Orbit determination with the two-body integrals, Celest. Mech. Dyn. Astr. 107, 299-318 (2010).   DOI
9 Hwang O, Jo JH, Trends of initial orbit determination accuracy for time interval change between three pairs of measurement datas, J. Astron. Space Sci. 26, 529-546 (2009). https://doi.org/10.5140/JASS.2009.26.4.529   DOI
10 Klokacheva MY, Determination of a preliminary orbit by the laplace method, Sov. Astron. 35, 428 (1991).
11 Marsden B, Initial orbit determination-the pragmatist's point of view, Astron. J. 90, 1541-1547 (1985). https://doi.org/10.1086/113867   DOI
12 Milani A, Sansaturio ME, Chesley SR, The asteroid identification problem IV: attributions, Icarus. 151, 150-159 (2001). https://doi.org/10.1006/icar.2001.6594   DOI
13 Milani A, Gronchi G, Theory of Orbit Determination (Cambridge University Press, Cambridge, UK, 2010).
14 Milani A, Gronchi GF, Farnocchia D, Knezevic Z, Jedicke R, et al., Topocentric orbit determination: algorithms for the next generation surveys, Icarus. 195, 474-492 (2008). https://doi.org/10.1016/j.icarus.2007.11.033   DOI
15 Milani A, Gronchi GF, Knezevic Z, New definition of discovery for solar system objects, Earth Moon Planets. 100, 83-116 (2007). https://doi.org/10.1007/s11038-006-9114-6   DOI
16 Milani A, Gronchi GF, Knezevic Z, Sansaturio ME, Arratia O, Orbit determination with very short arcs: II. identifications, Icarus. 179, 350-374 (2005). https://doi.org/10.1016/j.icarus.2005.07.004   DOI
17 Milani A, Gronchi GF, Vitturi MDM, Knezevic Z, Orbit determination with very short arcs. I admissible regions, Celest. Mech. Dyn. Astr. 90, 57-85 (2004). https://doi.org/10.1007/s10569-004-6593-5   DOI
18 Mirtorabi T, A simple procedure to extend the gauss method of determining orbital parameters from three to n points, Astrophys. Space Sci. 349, 137-141 (2014). https://doi.org/10.1007/s10509-013-1636-6   DOI
19 Mortari D, Scuro SR, Bruccoleri C, Attitude and orbit error in n-dimensional spaces, J. Astron. Sci. 54, 467-484 (2006). https://doi.org/10.1007/BF03256501   DOI
20 Mosquera DE, Salazar EAQ, Determination of the admissible region of asteroids with data from one night of observation, J. Phys. Ser. 1247, 012038 (2019). http://doi.org/10.1088/1742-6596/1247/1/012038   DOI
21 Poincare H, Memoires et observations. sur la determination des orbites par la methode de laplace, Bull. Astron. Serie I. 23, 161-187 (1906).
22 Quijano A, Rojas M, Chaves L, Calculo de los parametros orbitales del asteroide 2003QO104, Rev. Colomb. Fis. 42, 4 (2010).
23 Schaeperkoetter AV, A comprehensive comparison between angles-only initial orbit determination techniques, PhD Dissertation, Texas A&M University (2011).
24 Sokolskaya MJ, On the laplacian orbit determination of asteroids, Planet. Space Sci. 45, 1575-1580 (1997). https://doi.org/10.1016/S0032-0633(97)00106-2   DOI
25 Villarraga SJ, Salazar EAQ, Galvis JAA, Acquisition of the minor planet center code for the astronomical observatory of the technological university of Pereira (w63), Tecciencia. 12, 43-50 (2017). https://doi.org/10.18180/tecciencia.2017.23.6
26 Vallado D, McClain W, Fundamentals of Astrodynamics and Applications (Microcosm Press, Dordrecht, The Netherlands, 2001).
27 Villarraga SJ, Quintero-Salazar EA, Correccion topocentrica de parametros orbitales obtenidos mediante las integrales de Kepler para asteroides MBA y NEO, Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 40, 43-52 (2016). https://doi.org/10.18257/raccefyn.285   DOI