Browse > Article
http://dx.doi.org/10.5140/JASS.2018.35.1.19

Magellanic Clouds Cepheids: Thorium Abundances  

Jeong, Yeuncheol (Daeyang College, Sejong University)
Yushchenko, Alexander V. (Astrocamp Contents Research Institute)
Gopka, Vira F. (Astronomical observatory, Odessa I.I. Mechnikov National University)
Yushchenko, Volodymyr O. (Astronomical observatory, Odessa I.I. Mechnikov National University)
Kovtyukh, Valery V. (Astronomical observatory, Odessa I.I. Mechnikov National University)
Vasil'eva, Svetlana V. (Astronomical observatory, Odessa I.I. Mechnikov National University)
Publication Information
Journal of Astronomy and Space Sciences / v.35, no.1, 2018 , pp. 19-30 More about this Journal
Abstract
The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC), namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.
Keywords
abundances; variables: Cepheids; line: identification; nuclear reactions; nucleosynthesis; abundances; galaxies: Magellanic Clouds;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chekhonadskikh FA, Abundances and absolute stellar magnitudes for F and G supergiants of Magellanic Clouds, Kinemat. Phys. Celest. Bodies 28, 128-136 (2012). https://doi.org/10.3103/S0884591312030026   DOI
2 Coe MJ, Haberl F, Sturm R, Pietsch W, Townsend LJ, et al., The XMM-Newton survey of the Small Magellanic Cloud: XMMU J005011.2-730026 = SXP 214, a Be/X-ray binary pulsar, Mon. Not. R. Astron. Soc. 414, 3281-3287 (2011). https://doi.org/10.1111/j.1365-2966.2011.18626.x   DOI
3 Cowley CR, Ryabchikova T, Kupka F, Bord DJ, Mathys G, et al., Abundances in Przybylski's star, Mon. Not. R. Astron. Soc. 317, 299-309 (2000). https://doi.org/10.1046/j.1365-8711.2000.03578.x   DOI
4 Cowley CR, Hubrig S, Palmeri P, Quinet P, Biemont E, et al., HD 65949: Rosetta stone or red herring, Mon. Not. R. Astron. Soc. 405, 1271-1284 (2010). https://doi.org/10.1111/j.1365-2966.2010.16529.x
5 Cowley CR, Ayres TR, Castelli F, Gulliver AF, Monier R, et al., A study of the elements copper through uranium in Sirius A: contributions from STIS and ground-based spectra, Astrophys. J. 826, 158 (2016). https://doi.org/10.3847/0004-637X/826/2/158   DOI
6 Gerke JR, Kochanek CS, Stanek KZ, The search for failed supernovae with the Large Binocular Telescope: first candidates, Mon. Not. R. Astron. Soc. 450, 3289-3305 (2015). https://doi.org/10.1093/mnras/stv776   DOI
7 Gopka V, Yushchenko A, Andrievsky S, Goriely S, Vasileva S, et al., The abundances of chemical elements in the atmospheres of K-supergiants in the Small Magellanic Cloud and Arcturus, Proceedings of the IAU Symposia 228: From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Paris, France, 23-27 May 2005.
8 Gopka VF, Vasil'eva SV, Yushchenko AV, Andrievsky SM, Thorium lines in the spectra of several SMC supergiant stars, Odessa Astron. Publ. 20, 58-61 (2007). https://doi.org/10.18524/1810-4215.2007.20.87222
9 Gopka VF, Shavrina AV, Yushchenko VA, Vasil'eva SV, Yushchenko AV, et al., On the thorium absorption lines in the visible spectra of supergiant stars in the Magellanic Clouds, Bull. Crime. Astrophys. Obs. 109, 41-47 (2013). https://doi.org/10.3103/S0190271713010087   DOI
10 Gray DF, The Observation and Analysis of Stellar Photospheres (John Wiley & Sons Inc., Hoboken, 1976), 484.
11 Grevesse N, Asplund M, Sauval AJ, Scott P, The chemical composition of the Sun, Astrophys. Space Sci. 328, 179-183 (2010). https://doi.org/10.1007/s10509-010-0288-z   DOI
12 Grevesse N, Scott P, Asplund M, Sauval AJ, The elemental composition of the Sun. III. the heavy elements Cu to Th, Astron. Astrophys. 573, A27 (2015). https://doi.org/10.1051/0004-6361/201424111   DOI
13 Ivans II, Simmerer J. Sneden C. Lawler JE, Cowan JJ, et al., Near-ultraviolet observations of HD 221170: new insights into the nature of r-process-rich stars, Astrophys. J. 645, 613-633 (2006). https://doi.org/10.1086/504069   DOI
14 Jeong Y, Yushchenko AV, Doikov DN, Gopka VF, Yushchenko VO, Chemical composition of RR Lyn - an eclipsing binary system with Am and $\lambda$ Boo type components, J. Astron. Space Sci. 34, 75-82 (2017). https://doi.org/10.5140/JASS.2017.34.2.75   DOI
15 Kang YW, Yushchenko AV, Hong K, Guinan EF, Gopka VF, Signs of accretion in the abundance patterns of the components of the RS CVn-type eclipsing binary star LX Persei, Astron. J. 145, 167 (2013). https://doi.org/10.1088/0004-6256/145/6/167   DOI
16 Kim C, Yushchenko AV, Gopka VF, Dorokhova TN, Musaev FA, et al., Chemical composition and differential time-series CCD photometry of V2314 Ophiuchi: a new $\lambda$ Bootis-type star, Astron. J. 134, 926-933 (2007). https://doi.org/10.1086/520643   DOI
17 McCray R, Fransson C, The remnant of supernova 1987A, Annu. Rev. Astron. Astrophys. 54, 19-52 (2016). https://doi.org/10.1146/annurev-astro-082615-105405   DOI
18 Kochanek CS, Beacom JF, Kistler MD, Prieto JL, Stanek KZ, et al. A survey about nothing: monitoring a million supergiants for failed supernovae, Astrophys. J. 684, 1336-1342 (2008). https://doi.org/10.1086/590053   DOI
19 Kurucz RL, SYNTHE spectrum synthesis programs and line data [CD-ROM] (Smithsonian Astrophysical Observatory, Cambridge, 1993).
20 Landstreet JD, Abundances of the elements He to Ni in the atmosphere of Sirius A, Astron. Astrophys. 528, A132 (2011). https://doi.org/10.1051/0004-6361/201016259   DOI
21 Nilsson H, Zhang ZG, Lundberg H, Johansson S, Nordstrom B, Experimental oscillator strengths in Th II, Astron. Astrophys. 382, 368-377 (2002). https://doi.org/10.1051/0004-6361:20011597   DOI
22 Placco VM, Holmbeck EM, Frebel A, Beers TC, Surman RA, et al., RAVE J203843.2-002333: the first highly R-process-enhanced star identified in the RAVE Survey, Astrophys. J. 844, 18 (2017). https://doi.org/10.3847/1538-4357/aa78ef   DOI
23 Popov MV, Filina AA, Baranov AA, Chardonnet P, Chechetkin VM, Aspherical nucleosynthesis in a core-collapse supernova with $25M_{\odot}$ standard progenitor, Astrophys. J. 783, 43 (2014). https://doi.org/10.1088/0004-637X/783/1/43   DOI
24 Ren J, Christlieb N, Zhao G, The Hamburg/ESO R-process enhanced star survey (HERES). VII. thorium abundances in metal-poor stars, Astron. Astrophys. 537, A118 (2012). https://doi.org/10.1051/0004-6361/201118241   DOI
25 Romaniello M, Primas F, Mottini M, Pedicelli S, Lemasle B, et al., The influence of chemical composition on the properties of Cepheid stars. II. the iron content, Astron. Astrophys. 488, 731-747 (2008). https://doi.org/10.1051/0004-6361:20065661   DOI
26 Yushchenko AV, URAN: a software system for the analysis of stellar spectra, Proceedings of the 20th Stellar Conference of the Czech and Slovak Astronomical Institutes. Brno, Czech Republic, 5-7 November 1997.
27 Shulyak D, Ryabchikova T, Kildiyarova R, Kochukhov O, Realistic model atmosphere and revised abundances of the coolest Ap star HD 101065, Astron. Astrophys. 520, A88 (2010). https://doi.org/10.1051/0004-6361/200913750   DOI
28 Smartt SJ, Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass stars, Publ. Astron. Soc. Aust. 32, e016 (2015). https://doi.org/10.1017/pasa.2015.17   DOI
29 Unterborn CT, Johnson JA, Panero WR, Thorium abundances in solar twins and analogs: implications for the habitability of extrasolar planetary systems, Astrophys. J. 806, A139 (2015). https://doi.org/10.1088/0004-637X/806/1/139   DOI
30 Yushchenko AV, Gopka VF, On thorium abundance in the atmosphere of Procyon, Astron. Lett. 20, 453-455 (1994).
31 Yushchenko AV, Gopka VF, Kim C, Liang YC, Musaev FA, et al., The chemical composition of the mild barium star HD 202109, Astron. Astrophys. 413, 1105-1114 (2004). https://doi.org/10.1051/0004-6361:20031596   DOI
32 Yushchenko A, Gopka V, Goriely S, Musaev F, Shavrina A, et al., Thorium-rich halo star HD 221170: further evidence against the universality of the r-process, Astron. Astrophys. 430, 255-262 (2005a). https://doi.org/10.1051/0004-6361:20041540   DOI
33 Yushchenko A, Gopka V, Kim C, Musaev F, Kang YW, et al., The chemical composition of $\delta$ Scuti, Mon. Not. R. Astron. Soc. 359, 865-873 (2005b). https://doi.org/10.1111/j.1365-2966.2005.08921.x   DOI
34 Bjornsson C-I, Keshavarzi ST, Inhomogeneities and the modeling of radio supernovae, Astrophys. J. 841, 12 (2017). https://doi.org/10.3847/1538-4357/aa6cad   DOI
35 Yushchenko AV, Gopka VF, Kang YW, Kim C, Lee BC, et al., The chemical composition of $\rho$ Puppis and the signs of accretion in the atmospheres of B-F-type stars, Astron. J. 149, 59 (2015). https://doi.org/10.1088/0004-6256/149/2/59   DOI
36 Yushchenko AV, Gopka VF, Shavrina AV, Yushchenko VA, Vasileva SV, et al., Peculiarities of the abundance of chemical elements in the atmosphere of PMMR23 - red supergiant in the Small Magellanic Cloud due to interstellar gas accretion, Kinemat. Phys. Celest. Bodies 33, 199-216 (2017a). https://doi.org/10.3103/S0884591317050075   DOI
37 Yushchenko AV, Jeong Y, Gopka VF, Vasil'eva SV, Andrievsky SM, et al., Chemical composition of RM_1-390 - Large Magellanic Cloud red supergiant, J. Astron. Space Sci. 34, 199-205 (2017b). https://doi.org/10.5140/JASS.2017.34.3.199   DOI
38 Aoki W, Honda S, Sadakane K, Arimoto N, First determination of the actinide thorium abundance for a red giant of the Ursa minor dwarf galaxy, Publ. Astron. Soc. Jpn. 59, L15-L19 (2007). https://doi.org/10.1093/pasj/59.3.L15   DOI
39 Beers TC, Christlieb N, The discovery and analysis of very metal-poor stars in the Galaxy, Annu. Rev. Astron. Astrophys. 43, 531-580 (2005). https://doi.org/10.1146/annurev.astro.42.053102.134057   DOI
40 Castelli F, Kurucz RL, New Grids of ATLAS9 Model Atmospheres, Proceedings of the IAU Symposia 210: Modelling of Stellar Atmospheres, Uppsala University, Uppsala, Sweden, 17-21 June 2002.
41 Andrievsky SM, Kovtyukh VV, Bersier D, Luck RE, Gopka VP, et al., The unique galactic Cepheid V473 Lyrae revisited, Astron. Astrophys. 329, 599-605 (1998).
42 Adams SM, Kochanek CS, Gerke JR, Stanek KZ, Dai X, The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star, Mon. Not. R. Astron. Soc. 468, 4968-4981 (2017). https://doi.org/10.1093/mnras/stx816   DOI
43 Anderson RI, Saio H, Ekstrom S, Georgy C, Meynet G, On the effect of rotation on populations of classical Cepheids. II. Pulsation analysis for metallicities 0.014, 0.006, and 0.002, Astron. Astrophys. 51, A8 (2016). https://doi.org/10.1051/0004-6361/201528031