Browse > Article
http://dx.doi.org/10.5140/JASS.2015.32.2.141

On the Electric Fields Produced by Dipolar Coulomb Charges of an Individual Thundercloud in the Ionosphere  

Kim, Vitaly P. (Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN))
Hegai, Valery V. (Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Russian Academy of Sciences (IZMIRAN))
Publication Information
Journal of Astronomy and Space Sciences / v.32, no.2, 2015 , pp. 141-144 More about this Journal
Abstract
In this paper we study the transmission of the electrostatic field due to coulomb charges of an individual thundercloud into the midlatitude ionosphere, taking into account the total geomagnetic field integrated Pedersen conductivity of the ionosphere. It is shown that at ionospheric altitudes, a typical thundercloud produces an insignificant electrostatic field whereas a giant thundercloud can drive the horizontal electrostatic field with a magnitude of ${\sim}270{\mu}V/m$ for nighttime conditions.
Keywords
thundercloud; ionosphere; electrostatic field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chalmers JA, Atmospheric electricity (Pergamon, New York, 1967), 309-342.
2 Cole Jr. RK, Pierce ET, Electrification in the Earth's atmosphere for altitudes between 0 and 100 kilometers, J. Geophys. Res. 70, 2735-2749 (1965). http://dx.doi.org/10.1029/JZ070i012p02735   DOI
3 Hays PB, Roble RG, A quasi-static model of global atmospheric electricity, 1. The lower atmosphere, J. Geophys. Res. 84, 3291-3305 (1979). http://dx.doi.org/10.1029/JA084iA07p03291   DOI
4 Kasemir HW, The thundercloud, in Problems of Atmospheric and Space Electricity, ed. Coroniti SC (Elsevier, New York, 1965), 215-235.
5 Kelley MC, Siefring CL, Pfaff RF, Kintner PM, Larsen M, et.al., Electrical measurements in the atmosphere and the ionosphere over an active thunderstorm: 1. Campaign overview and initial ionospheric results, J. Geophys. Res. 90, 9815-9823 (1985). http://dx.doi.org/10.1029/JA090iA10p09815   DOI
6 Kelley MC, Ding JG, Holzworth RH, Intense ionospheric electric and magnetic field pulses generated by lightning, Geophys. Res. Lett. 17, 2221-2224 (1990). http://dx.doi.org/10.1029/GL017i012p02221   DOI
7 Malan DJ, Physics of Lightning (The English Universities Press, 1963), 23-37.
8 Park CG, Dejnakarintra M, Penetration of thundercloud electric fields into the ionosphere and magnetosphere: 1. Middle and subauroral latitudes, J. Geophys. Res. 78, 6623-6633 (1973). http://dx.doi.org/10.1029/JA078i028p06623   DOI
9 Schunk RW, A mathematical model of the middle and high latitude ionosphere, Pure Appl. Geophys. 127, 255-303 (1988). http://dx.doi.org/10.1007/BF00879813   DOI
10 Swider W, Ionic mobility, mean mass, and conductivity in the middle atmosphere from near ground level to 70 km, Radio Sci. 23, 389-399 (1988). http://dx.doi.org/10.1029/RS023i003p00389   DOI
11 Uman MA, Lightning (McGraw-Hill, New York, 1969), 10-35.
12 Vlasov MN, Kelley MC, Electron heating and airglow emission due to lightning effects on the ionosphere, J. Geophys. Res. 114, A00E06 (2009). http://dx.doi.org/10.1029/2008JA013922
13 Weisberg JS, Meteorology: The Earth and Its Weather (Houghton Mifflin, Boston, 1976), 107-122.