Browse > Article
http://dx.doi.org/10.5140/JASS.2015.32.2.101

Recent Progress in Understanding Solar Magnetic Reconnection  

Lee, Jeongwoo (Center for Solar and Terrestrial Research, New Jersey Institute of Technology)
Publication Information
Journal of Astronomy and Space Sciences / v.32, no.2, 2015 , pp. 101-112 More about this Journal
Abstract
Magnetic reconnection is a fundamental process occurring in a wide range of astrophysical, heliospheric and laboratory plasmas. This process alters magnetic topology and triggers rapid conversion of magnetic energy into thermal heating and nonthermal particle acceleration. Efforts to understand the physics of magnetic reconnection have been made across multiple disciplines using remote observations of solar flares and in-situ measurements of geomagnetic storms and substorms as well as laboratory and numerical experiments. This review focuses on the progress achieved with solar flare observations in which most reconnection-related signatures could be resolved in both space and time. The emphasis is on various observable emission features in the low solar atmosphere which manifest the coronal magnetic reconnection because these two regions are magnetically connected to each other. The research and application perspectives of solar magnetic reconnection are briefly discussed and compared with those in other plasma environments.
Keywords
flares; radio emission; X-rays; gamma rays; magnetic fields; energetic particles; particle acceleration;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kopp RA, Pneuman GW, Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Phys. 50, 85-98 (1976) http://dx.doi.org/10.1007/BF00206193
2 Kulsrud RM, Important plasma problems in astrophysics, Phys. Plasmas 2, 1735-1745 (1995). http://dx.doi.org/10.1063/1.871321   DOI
3 Kulsrud RM, Magnetic reconnection in a magnetohydrodynamic plasma, Phys. Plasmas 5, 1599-1606 (1998). http://dx.doi.org/10.1063/1.872827   DOI
4 Lee J, Gary DE, Choe GS, Magnetic energy release during the 2002 September 9 Solar flare, Astrophys. J. 647, 638-647 (2006). http://dx.doi.org/10.1086/505416   DOI
5 Lee J, Gary DE, Parallel Motions of Coronal Hard X-Ray Source and $H{\alpha}$ Ribbons, Astrophys. J. 685L87 (2008). http://dx.doi.org/10.1086/592292   DOI
6 Lee JH, Lee D-Y, Choi K-C, Jeong Y, Some Statistical Characteristics of Substorms Under Northward IMF Conditions, J. Astron. Space Sci. 26, 451-468 (2009). http://dx.doi.org/10.5140/JASS.2009.26.4.451   DOI
7 Litvinenko YE, Particle Acceleration in Reconnecting Current Sheets with a Nonzero Magnetic Field, Astrophys. J. 462, 997L (1996). http://dx.doi.org/10.1086/177213   DOI
8 Liu C, Lee J, Gary DE, Wang H, The Ribbon-like Hard X-Ray Emission in a Sigmoidal Solar Active Region, Astrophys. J. 658, L127-L130 (2007). http://dx.doi.org/10.1086/513739   DOI
9 Liu C, Lee J, Jing J, Gary DE, Wang H, The Spatial Distribution of the Hard X-Ray Spectral Index and the Local Magnetic Reconnection Rate, Astrophys. J. 672, L69-L72 (2008). http://dx.doi.org/10.1086/525849   DOI
10 Liu R, Lee J, Wang T, Stenborg G, Liu C, et al., A Reconnecting Current Sheet Imaged in a Solar Flare, Astrophys. J. 723, L28-L33 (2010). http://dx.doi.org/ 10.1088/2041-8205/723/1/L28   DOI
11 Liu R, Wang TJ, Lee J, Stenborg G, Liu C, et al., Observing the reconnection region in a transequatorial loop system, Res. Astron. Astrophys. 11, 1209-1228 (2011). http://dx.doi.org/10.1088/1674-4527/11/10/009   DOI
12 Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y, A looptop hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature 371, 495-497 (1994). http://dx.doi.org/10.1038/371495a0   DOI
13 Miklenic CH, Veronig AM, Vrsnak B, Hanslmeier A, Reconnection and energy release rates in a two-ribbon flare, Astron. Astrophys. 461, 697-706 (2007) http://dx.doi.org/10.1051/0004-6361:20065751   DOI
14 Miller JA, Cargill PJ, Emslie AG, Holman GD, Dennis BR, et al., Critical issues for understanding particle acceleration in impulsive solar flares, J. Geophys. Res. 102, 14631-14659 (1997). http://dx.doi.org/10.1029/97JA00976   DOI
15 Miller JA, Ramaty R, Stochastic acceleration in impulsive solar flares, in Particle Acceleration in Cosmic Plasmas, eds. Zank GP, Gaisser TK (AIP Press, New York, 1992), 223-228. http://dx.doi.org/10.1063/1.42732
16 Parker EN, Sweet's mechanism for merging magnetic fields in conducting fluids, J. Geophys. Res. 62, 509-520 (1957). http://dx.doi.org/10.1029/JZ062i004p00509   DOI
17 Paschmann G, Papamastorakis I, Sckopke N, Haerendel G, Sonnerup BU, et al., Plasma acceleration at the earth's magnetopause - Evidence for reconnection, Nature 282, 243-246 (1979). http://dx.doi.org/10.1038/282243a0   DOI
18 Antiochos SK, DeVore CR, Klimchuk JA, A Model for Solar Coronal Mass Ejections, Astrophys. J. 510, 485-493 (1999). http://dx.doi.org/10.1086/306563   DOI
19 Acton LW, Feldman U, Bruner ME, Doschek GA, Hirayama T, et al., The morphology 20 $\times$ 10 exp 6 K plasma in large non-impulsive solar flares, Publ. Astron. Soc. Jpn. 44, L71-L75 (1992).
20 Angelopoulos V, McFadden JP, Larson D, Carlson CW, Mende SB, et al., Tail Reconnection Triggering Substorm Onset, Science 321, 931-935 (2008). http://dx.doi.org/10.1126/science.1160495   DOI
21 Sakao T, Kosugi T, Masuda S, Inda M, Makishima K, et al., Hard X-ray imaging observations by YOHKOH of the 1991 November 15 solar flare, Publ. Astron. Soc. Jpn. 44, L83-L87 (1992).
22 Paschmann G, Recent in-situ observations of magnetic reconnection in near-Earth space, Geophys. Res. Lett. 35, L19109 (2008). http://dx.doi.org/10.1029/2008GL035297   DOI
23 Paschmann G, Oieroset M, Phan T, In-Situ Observations of Reconnection in Space, Space Sci. Rev. 178, 385-418 (2013). http://dx.doi.org/10.1007/s11214-012-9957-2   DOI
24 Petschek HE, The Physics of Solar Flares, eds. Hess WN (NASA SP-50, Washington, 1964), 425-439.
25 Sonnerup BUO, Paschmann G, Papamastorakis I, Sckopke N, Haerendel G, et al., Evidence for magnetic field reconnection at the earth's magnetopause, J. Geophys. Res. 86, 10049-10067 (1981). http://dx.doi.org/10.1029/JA086iA12p10049   DOI
26 Sturrock PA, A Model of Solar Flares, in Structure and Development of Solar Active Regions, Budapest, Hungary, 4-8 Sep 1967.
27 Sui L, Holman GD, Evidence for the Formation of a Large-Scale Current Sheet in a Solar Flare, Astrophys. J. 596, L251-L254 (2003). http://dx.doi.org/10.1086/379343   DOI
28 Sweet PA, Electromagnetic Phenomena in Cosmical Physics (Cambridge University Press, New York, 1958).
29 Temmer M, Veronig AM, Vrsnak B, Miklenic C, Energy release rates along $H{\alpha}$ flare ribbons and the location of hard X-ray sources, Astrophys. J. 654, 665-674 (2007). http://dx.doi.org/10.1086/509634   DOI
30 Asai A, Masuda S, Yokoyama T, Shimojo M, Isobe H, et al., Difference between spatial distributions of the H? Kernels and hard X-Ray sources in a Solar Flare, Astrophys. J. 578, L91-L94 (2002). http://dx.doi.org/10.1086/344566   DOI
31 Asai A, Yokoyama T, Shimojo M, Masuda S, Kurokawa H, et al., Flare Ribbon expansion and energy release rate, Astrophys. J. 611, 557-567 (2004). http://dx.doi.org/10.1086/422159   DOI
32 Atkinson G, Energy flow and closure of current systems in the magnetosphere, J. Geophys. Res. 83, 1089-1103 (1978). http://dx.doi.org/10.1029/JA083iA03p01089   DOI
33 Bentley RD, Doschek GA, Simnett GM, Rilee ML, Mariska JT, et al., The correlation of solar flare hard X-ray bursts with Doppler blueshifted soft X-ray flare emission, Astrophys. J. 421, L55-L58 (1994). http://dx.doi.org/10.1086/187186   DOI
34 Cargill PJ, Klimchuk JA, A Nanoflare Explanation for the Heating of Coronal Loops Observed by Yohkoh, Astrophys. J. 478, 799-806 (1997)   DOI
35 Carmichael H, The Physics of Solar Flares, eds. Hess WN (NASA SP-50, Washington, 1964), 451.
36 Cassak PA, Mullan DJ, Shay MA, From Solar and Stellar Flares to Coronal Heating: Theory and Observations of How Magnetic Reconnection Regulates Coronal Conditions, Astrophys. J. 676, L69-L72 (2008). http://dx.doi.org/10.1086/587055   DOI
37 Cassak PA, Drake JF, On Phase Diagrams of Magnetic Reconnection, Phys. Plasmas 20, 061207 (2013). http://dx.doi.org/10.1063/1.4811120   DOI
38 Daughton W, Roytershteyn V, Emerging parameter space map of magnetic reconnection in collisional and kinetic regimes, Space Sci. Rev. 172, 271-282 (2012). http://10.1007/s11214-011-9766-z   DOI
39 Tsuneta S, Structure and Dynamics of Magnetic Reconnection in a Solar Flare, Astrophys. J. 456, 840-849 (1996). http://dx.doi.org/10.1086/176701   DOI
40 Tsuneta S, Solar Flare as an Ongoing Magnetic Reconnection Process (Invited), Proceedings of the International Astronomical Union (IAU) Colloquium, eds. Zirin H, Ai G, Wang H (Astronomical Society of the Pacific, San Francisco, 1993), 239-248.
41 Tsuneta S, Naito T, Fermi Acceleration at the Fast Shock in a Solar Flare and the Impulsive Loop-Top Hard X-Ray Source, Astrophys. J. 495, L67-L70 (1998). http://dx.doi.org/10.1086/311207   DOI
42 Yamada M, Kulsrud R, Ji H, Magnetic reconnection, Rev. Mod. Phys. 82, 603 (2010). http://dx.doi.org/10.1103/RevModPhys.82.603   DOI
43 Yamada M, Yoo J, Jara-Almonte J, Ji H, Kulsrud RM, et al., Conversion of magnetic energy in the magnetic reconnection layer of a laboratory plasma, Nat. Commun. 5, 4774 (2014) http://dx.doi.org/10.1038/ncomms5774   DOI
44 Yokoyama T, Akita K, Morimoto T, Inoue K, Newmark J, Clear evidence of reconnection inflow of a solar flare, Astrophys. J. 546, L69-L72 (2001). http://dx.doi.org/10.1086/318053   DOI
45 Giovanelli RG, A Theory of Chromospheric Flares, Nature 158, 81-82 (1946). http://dx.doi.org/10.1038/158081a0   DOI
46 Doschek GA, Strong KT, Tsuneta S, The bright knots at the tops of soft X-ray flare loops: Quantitative results from YOHKOH, Astrophys. J. 440, 370-385 (1995). http://dx.doi.org/10.1086/175279   DOI
47 Fletcher L, Pollock JA, Potts HE, Tracking of TRACE ultraviolet flare footpoints, Solar Phys. 222, 279-298 (2004). http://dx.doi.org/10.1023/B:SOLA.0000043580.89730.4d   DOI
48 Forbes TG, Priest ER, Numerical simulation of reconnection in an emerging magnetic flux region, Solar Phys. 94, 315-340 (1984). http://dx.doi.org/10.1007/BF00151321   DOI
49 Gosling JT, Birn J, Hesse M, Three-dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events, Geophys. Res. Lett. 22, 869-872 (1995). http://dx.doi.org/10.1029/95GL00270   DOI
50 Grigis PC, Benz AO, The evolution of reconnection along an arcade of magnetic loop, Astrophys. J. 625, L143-L146 (2005). http://dx.doi.org/10.1086/431147   DOI
51 Hamilton RJ, Petrosian V, Stochastic acceleration of electrons. I - Effects of collisions in solar, Astrophys. J. 398, 350-358 (1992). http://dx.doi.org/10.1086/171860   DOI
52 Hesse M, Forbes TG, Birn J, On the relation between reconnected magnetic flux and parallel electric fields in the Solar corona, Astrophys. J. 631, 1227-1238 (2005). http://dx.doi.org/10.1086/432677   DOI
53 Hesse M, Aunai N, Birn J, Cassak P, Denton RE, et al., Theory and Modeling for the Magnetospheric Multiscale Mission, Space Sci. Rev. (2014). http://dx.doi.org/10.1007/s11214-014-0078-y
54 Isobe H, Takasaki H, Shibata K, Measurement of the energy release rate and the reconnection rate in Solar flares, Astrophys. J. 632, 1184-1195 (2005). http://dx.doi.org/10.1086/444490   DOI
55 Hirayama T, Theoretical Model of Flares and Prominences. I: Evaporating Flare Model, Solar Phys. 34, 323-338 (1974). http://dx.doi.org/10.1007/BF00153671   DOI
56 Huba JD, Unstable Current Systems and Plasma Instability Astrophysics, eds. Kundu MR, Holman GD, (College Park, Maryland, 1985), 315-328.
57 Hwang KJ, Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere, J. Astron. Space Sci. 32, 1-11 (2015). http://dx.doi.org/10.5140/JASS.2015.32.1.1   DOI
58 Ji H, Yamada M, Hsu S, Kulsrud R, Carter T, et al., Magnetic reconnection with Sweet-Parker characteristics in twodimensional laboratory plasmas, Phys. Plasmas 6, 1743 (1999). http://dx.doi.org/10.1063/1.873432   DOI
59 Ji H, Daughton W, Phase diagram for magnetic reconnection in heliophysical, astrophysical and laboratory plasmas, Phys. Plasmas 18, 111207 (2011). http://dx.doi.org/10.1063/1.3647505   DOI
60 Jing J, Qiu J, Lin J, Qu M, Xu Y, et al., Magnetic Reconnection Rate and Flux-Rope Acceleration of Two-Ribbon Flares, Astrophys. J. 620, 1085 (2005). http://dx.doi.org/10.1086/427165   DOI
61 Jing J, Lee J, Liu C, Gary DE, Wang H, Hard X-ray intensity distribution along Halpha ribbons, Astrophys. J. 664, L127-L130 (2007). http://dx.doi.org/10.1086/520812   DOI
62 Kliem B, Karlicky M, Benz AO, Solar flare radio pulsations as a signature of dynamic magnetic reconnection, Astron. Astrophys. 360, 715-728 (2000).