Browse > Article
http://dx.doi.org/10.5140/JASS.2011.28.4.253

Dust Around T Tauri Stars  

Suh, Kyung-Won (Department of Astronomy and Space Science, Chungbuk National University)
Kwon, Young-Joo (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.28, no.4, 2011 , pp. 253-260 More about this Journal
Abstract
To reproduce the multiple broad peaks and the fine spectral features in the spectral energy distributions (SEDs) of T Tauri stars, we model dust around T Tauri stars using a radiative transfer model for multiple isothermal circumstellar dust shells. We calculate the radiative transfer model SEDs for multiple dust shells using the opacity functions for various dust grains at different temperatures. For six sample stars, we compare the model results with the observed SEDs including the Spitzer spectral data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around classical T Tauri stars. We find that at least three separate dust components are required to reproduce the observed SEDs. For all the sample stars, an innermost hot (250-550 K) dust component of amorphous (silicate and carbon) and crystalline (corundum for all objects and forsterite for some objects) grains is needed. Crystalline forsterite grains can reproduce many fine spectral features of the sample stars. We find that crystalline forsterite grains exist in cold regions (80-100 K) as well as in hot inner shells.
Keywords
stars: pre-main sequences; infrared: stars; circumstellar matter; dust: extinction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Suh KW, Optical properties of the carbon dust grains in the envelopes around AGB stars, MNRAS, 315, 740-750 (2000). http://dx.doi.org/10.1046/j.1365-8711.2000.03482.x   DOI
2 Suh KW, Optical properties of the silicate dust grains in the envelopes around AGB stars, MNRAS, 304, 389-405 (1999). http://dx.doi.org/10.1046/j.1365-8711.1999.02317.x   DOI
3 Tamanai A, Mutschke H, Blum J, Posch Th, Koike C, et al., Morphological effects on IR band profiles. Experimental spectroscopic analysis with application to observed spectra of oxygen-rich AGB stars, A&A, 501, 251-267 (2009). http://dx.doi.org/10.1051/0004-6361/200911614
4 Towers IN, Robinson G, A model for multiple isothermal circumstellar dust shells, PhyS, 80, 015901 (2009). http://dx.doi.org/10.1088/0031-8949/80/01/015901
5 Whitney BA, Wood K, Bjorkman JE, Wolff MJ, Two-dimensional radiative transfer in protostellar envelopes. I. Effects of geometry on Class I sources, ApJ, 591, 1049-1063 (2003). http://dx.doi.org/10.1086/375415   DOI
6 Zacharias N, Monet DG, Levine SE, Urban SE, Gaume R, et al., The Naval Observatory Merged Astrometric Dataset (NOMAD), in American Astronomical Society 205th Meeting, San Diego, CA, 9-13 Jan 2004, #48.15.
7 Miroshnichenko A, Ivezic Z, Vinkovic D, Elitzur M, Dust emission from Herbig Ae/Be stars: evidence for disks and envelopes, ApJ, 520, L115-L118 (1999).   DOI
8 Mundt R, Bastian U, UBV photometry of young emission-line objects, A&AS, 39, 245-250 (1980).
9 Murakami H, Baba H, Barthel P, Clements DL, Cohen M, et al., The infrared astronomical mission AKARI, PASJ, 59, S369-S376 (2007).
10 Olofsson J, Augereau JC, van Dishoeck EF, Merín B, Lahuis F, et al., C2D Spitzer-IRS spectra of disks around T Tauri stars IV. Crystalline silicates, A&A, 507, 327-345 (2009). http://dx.doi.org/10.1051/0004-6361/200912062   DOI
11 Olofsson J, Augereau JC, van Dishoeck EF, Merin B, Grosso N, et al., C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition A&A, 520, A39 (2010). http://dx.doi.org/10.1051/0004-6361/200913909   DOI
12 Shevchenko VS, Herbst W, The search for rotational modulation of T Tauri stars in the ophiuchus dark cloud, AJ, 116, 1419-1431 (1998). http://dx.doi.org/10.1086/300496   DOI
13 Sicilia-Aguilar A, Bouwman J, Juhasz A, Henning Th, Roccatagliata V, et al., The long-lived disks in the η Chamaeleontis cluster, ApJ, 701, 1188-1203 (2009). http://dx.doi.org/10.1088/0004-637x/701/2/1188   DOI
14 Juhasz A, Bouwman J, Henning Th, Acke B, van den Ancker ME, et al., Dust Evolution in Protoplanetary Disks Around Herbig Ae/Be Stars- the Spitzer View, ApJ, 721, 431-455 (2010). http://dx.doi.org/10.1088/0004-637x/ 721/1/431   DOI
15 Simon M, Ghez AM, Leinert Ch, Cassar L, Chen WP, et al., A lunar occultation and direct imaging survey of multiplicity in the Ophiuchus and Taurus starforming regions, ApJ, 443, 625-637 (1995). http://dx.doi.org/10.1086/175554   DOI
16 Spangler C, Sargent AI, Silverstone MD, Becklin EE, Zuckerma B, Dusty debris around solar-type stars: temporal disk evolution, ApJ, 555, 932-944 (2001). http://dx.doi.org/10.1086/321490   DOI
17 Suh KW, Dust around Herbig AE/Be stars, JKAS, 44, 13-21 (2011). http://dx.doi.org/10.5303/jkas.2011.44.1.13   과학기술학회마을   DOI
18 Kimura Y, Miyazaki Y, Kumamoto A, Saito M, Kaito C, Characteristic low-temperature crystallization of amorphous Mg-bearing silicate grains under electron irradiation, ApJ, 680, L89-L92 (2008). http://dx.doi.org/10.1086/589828   DOI
19 Lawson WA, Crause LA, Mamajek EE, Feigelson ED, The $\eta$ Chamaeleontis cluster: photometric study of the ROSAT-detected weak-lined T Tauri stars, MNRAS, 321, 57-66 (2001). http://dx.doi.org/10.1046/j.1365-8711.2001. 03967.x   DOI
20 Lawson WA, Feigelson ED, Huenemoerder DP, An improved HR diagram for Chamaeleon I pre-main-sequence stars, MNRAS, 280, 1071-1088 (1996).
21 Luhman KL, Allen LE, Allen PR, Gutermuth RA, Hartmann L, et al., The disk population of the Chamaeleon I star-forming region, ApJ, 675, 1375-1406 (2008). http://dx.doi.org/10.1086/527347   DOI
22 Lyo A, Lawson WA, Bessell MS, The spectroscopic characteristics of intermediate aged pre-main-sequence stars: the $\eta$ Chamaeleontis cluster, MNRAS, 355, 363-373 (2004). http://dx.doi.org/10.1111/j.1365-2966.2004.08318.x   DOI
23 Bouwman J, Lawson WA, Dominik C, Feigelson ED, Henning Th, et al., Binarity as a key factor in protoplanetary disk evolution: Spitzer disk census of the $\eta$ chamaeleontis cluster, ApJ, 653, L57-L60 (2006). http://dx.doi.org/10.1086/510365   DOI
24 Makarov VV, Signatures of dynamical star formation in the ophiuchus association of pre-main-sequence stars, ApJ, 670, 1225-1233 (2007). http://dx.doi.org/10.1086/522669   DOI
25 Mamajek EE, Lawson WA, Feigelson ED, The $\eta$ Chamaeleontis cluster: a remarkable new nearby young open cluster, ApJ, 516, L77-L80 (1999).   DOI
26 Megeath ST, Hartmann L, Luhman KL, Fazi GG, Spitzer/IRAC photometry of the $\eta$ Chameleontis association, ApJ, 634, L113-L116 (2005). http://dx.doi.org/10.1086/498503   DOI
27 Cambresy L, Copet E, Epchtein N, de Batz B, Borsenberger J, et al., New young stellar object candidates in the Chamaeleon I molecular cloud discovered by DENIS, A&A, 338, 977-987 (1998).
28 Carrez P, Demyk K, Leroux H, Cordier P, Jones AP, et al., Low-temperature crystallization of $MgSiO_{3}$ glasses under electron irradiation: possible implications for silicate dust evolution in circumstellar environments, M&PS, 37, 1615-1622 (2002). http://dx.doi.org/10.1111/j.1945-5100.2002.tb00815.x
29 Dullemond CP, Apai D, Walch S, Crystalline silicates as a probe of disk formation history, ApJ, 640, L67-L70 (2006). http://dx.doi.org/10.1086/503100   DOI
30 Fabian D, Jager C, Henning Th, Dorschner J, Mutschke H, Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica, A&A, 364, 282-292 (2000).
31 Fazio GG, Hora JL, Allen LE, Ashby MLN, Barmby P, et al., The infrared array camera (IRAC) for the Spitzer space telescope, ApJS, 154, 10-17 (2004). http://dx.doi.org/10.1086/422843   DOI   ScienceOn
32 Bohren CF, Huffman DR, Absorption and scattering of light by small particles (Wiley, New York, 1983).
33 Gautier TN III, Rebull LM, Stapelfeldt KR, Mainzer A, Spitzer-MIPS observations of the $\eta$ Chamaeleontis young association, ApJ, 683, 813-821 (2008). http://dx.doi.org/10.1086/589708.   DOI
34 Ivezic A, Elitzur M, Self-similarity and scaling behaviour of infrared emission from radiatively heated dust. I. Theory, MNRAS, 287, 799-811 (1997).   DOI   ScienceOn
35 Jager C, Molster FJ, Dorschner J, Henning Th, Mutschke H, et al., Steps toward interstellar silicate mineralogy. IV. The crystalline revolution, A&A, 339, 904-916 (1998).
36 Bertout C, T Tauri stars: wild as dust, ARA&A, 27, 351-395 (1989). http://dx.doi.org/10.1146/annurev.aa.27.090189.002031   DOI
37 Bertout C, Robichon N, Arenou, F, Revisiting Hipparcos data for pre-main sequence stars, A&A, 352, 574-586 (1999).
38 Bouwman J, Henning Th, Hillenbrand LA, Meyer MR, Pascucci I, et al., The formation and evolution of planetary systems: grain growth and chemical processing of dust in T Tauri systems, ApJ, 683, 479-498 (2008). http://dx.doi.org/10.1086/587793   DOI