Browse > Article
http://dx.doi.org/10.9722/JGTE.2013.23.2.289

Analysis of Science Process Skills and Suggestions for Developing Scientific-Inquiry of Secondary Science Gifted Students  

Shin, My-Young (Seoul National University)
Publication Information
Journal of Gifted/Talented Education / v.23, no.2, 2013 , pp. 289-310 More about this Journal
Abstract
The purpose of the study is to investigate science process skills and suggest several considerations about developing scientific inquiries for secondary science gifted students. To do this, we analyzed scientific inquiries of science gifted programs and evaluated them on the quantity of problem perception, problem finding and inquiry planning that are regarded as high level science process skills, then revised each inquiry to include those high level skills. The result was that the first, there were differences in frequencies and types of science process skills among those inquiries. The second, there were very few problem perception and problem finding and were not many inquiry planning. The third, some of the revised inquiries showed those high level skills. From this, we would like to suggest we should construct scientific inquiries of science gifted program out of many and various themes. And there should be more high level science process skills such as problem perception, problem finding, and inquiry planning. For this, scientific inquiry developers should have intentions to involve such science process skills which is appropriate for science gifted student.
Keywords
Science Gifted Program; Science Process Skills; Problem Perception; Problem finding; Inquiry Planning;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Treffinger, D. J. (1986). Fostering effective, independent learning through individualized programming. In J. S. Renzulli (Ed.), Systems and models for developing programs for the gifted and talented (pp. 429-460). CT: Creative learning Press.
2 Sternberg, R. J., & Lubart, T. I. (1993). Creative giftedness: A multivariate investment approach. Gifted Child Quarterly, 37(1). 7-15.   DOI   ScienceOn
3 VanTassel-Baska, J. (1986), Effective curriculum and instructional models for talented students. Gifted Child Quarterly, 30(40), 164-169.   DOI
4 VanTassel-Baska, J., & Kulieke, M. (1987). The role of community-based resources in developing scientific talents; A case study. Gifted Child Quarterly, 31(3), 111-115.   DOI
5 2006년도 서울시 성북교육청 영재교육원 자료집. 서울시 성북교육청.
6 2007년도 중등과학영재 심화교수학습자료. 한국교육개발원.
7 2009년도 과학(기초반) 자료집. 서울대학교 관악영재교육원.
8 2009년도 과학(심화반) 자료집. 서울대학교 관악영재교육원.
9 2009년도 서울영재교육과정/중등과학. 서울시교육청.
10 2010년도 영재교수.학습표준화자료. 서울시과학전시관.
11 김순식 (2010). 문제발견 중심의 과학 탐구수업이 영재학생들에게 미치는 효과. 영재와 영재교육, 9(2), 37-63.
12 VanTassel-Baska, J., & Kulieke, M. (2005). Domain-Specific Giftedness; Applications in School and Life. In R. J. Sternberg and J. E. Davidson (Ed.), Conceptions of Giftedness (2nd Ed., pp. 358-375). Cambridge: Cambridge University Press.
13 Weatley, G. H. (1983). A mathematics curriculum for the gifted and talented. Gifted Child Quarterly, 27(2), 77-80.   DOI
14 강은주, 김선자, 박종욱 (2009). 초등과학 영재학생의 개방적 탐구 활동에서 나타난 참과학 탐구의 특징 분석. 영재교육연구, 19(3), 647-667.
15 김정훈, 박영신 (2012). 중등 예비 과학교사들의 지구과학영역 탐구문제 개발 능력 분석. 한국지구과학회, 33(3), 294-305.   과학기술학회마을   DOI   ScienceOn
16 박종원, 이종백, 오원근, 박종석 (2000). 과학 영재 교육 프로그램에 대한 분석 연구 I -물리 영역을 중심으로-. 영재교육연구, 10(1), 75-104.   과학기술학회마을
17 신명렬, 이용섭 (2011a). IIM을 적용한 천문학습 프로그램 개발․적용이 초등과학영재학생의 과학탐구능력과 과학적 태도에 미치는 효과. 영재교육연구, 21(2), 337-356.
18 신명렬, 이용섭 (2011b). SGIM을 적용한 천문학습 프로그램 개발․적용이 초등과학영재의 메타인지와 과학탐구능력에 미치는 효과. 영재교육연구, 21(3), 719-739.
19 신명렬, 이용섭 (2012). 과학캠프 운영이 초등과학영재의 과학탐구능력 및 과학적 태도에 미치는 효과. 영재교육연구, 22(4), 967-983.   과학기술학회마을   DOI   ScienceOn
20 신미영, 전미란, 최승언 (2005). 서울대학교 과학영재 프로그램의 학습 목표, 과학적 모형, 과학탐구의 인지 과정 분석. 한국지구과학회지, 26(5), 387-398.
21 심규철, 김현섭, 김여상, 최선영 (2004). 생물 분야 과학영재들의 학습 양식에 대한 조사연구. 한국생물교육학회, 32(4), 267-275.
22 유미현 (2010). SSC(Small-Scale Chemistry)실험이 과학영재의 과학적 태도, 창의적 성격특성 및 과학탐구 능력에 미치는 효과. 영재교육연구, 20(2), 487-502.
23 Chinn, C. A., & Brewer, W. F. (1996). Mental models in data interpretation. Philosophy of Science. 63(3). S211-S219.   DOI   ScienceOn
24 정원우, 권용주, 황석근 (1999). 과학영재교육센터 교육체제의 효율적인 운영방안에 관한 연구. 영재교육연구, 9(2), 73-101.   과학기술학회마을
25 Betts, G. T. (1985). The Autonomous Learner Model for the Gifted and Talented. In J. S. Renzulli (Ed.), Systems and models for developing programs for the gifted and talented (pp. 27-56). CT: Creative learning Press.
26 Chin, C., Brown, D. E., & Bruce, B. C. (2002). Student-generated questiona: A meaningful aspect of leraning in science. International Journal of Science Education, 24(5), 521-549.   DOI   ScienceOn
27 Cropper, C. (1998). Is competition an effective classroom tool for the gifted student?. Gifted Child Quarterly, May/June, 28-30.
28 Jacobs, H. H., & Borland, J. H. (1986). The interdisciplinary concept model: Theory and practice. Gifted Child Quarterly, 30(4), 159-163.   DOI
29 Johnson, D. T., Boyce, L. N., & VanTassel-Baska, J. (1995). Science curriculum review; Evaluating materials for high-ability learners. Gifted Child Quarterly, 39(1), 36-43.   DOI
30 Kaplan, S. N. (1982). Myth: There is an single curriculum for the gifted! Gifted Child Quarterly, 26(1), 32-33.   DOI
31 Renzulli, J. S. (1977). The enrichment triad. Wethersfield, CT: Creative Learnign Press.
32 Renzulli, J. S. (1982). What makes a problem real: Stalking the illusive meaning of qualitative differences in gifted education. Gifted Child Quarterly, 26(4), 170-182.
33 Roychyoudhury, A., & Roth, W. (1996). Interactions in an open-inquiry physics laboratory. International Journal of Science Education, 18(4), 423-445.   DOI   ScienceOn