Browse > Article
http://dx.doi.org/10.9722/JGTE.2012.22.2.317

Brain Activity of Science High School Students and Foreign Language High School Students during the Intelligence Task  

Cho, Sun-Hee (KAIST)
Choi, Yu-Yong (GIST)
Lee, Kun-Ho (Chosun University)
Publication Information
Journal of Gifted/Talented Education / v.22, no.2, 2012 , pp. 317-332 More about this Journal
Abstract
We investigated brain activity during the performance of the intelligence task by a science high school student group (n=8) and a foreign language high school student group (n=5). Both groups scored in the top 1% on intelligence tests (science high school group: RAPM mean score=34.0, WAIS mean IQ=139.6; foreign language high school group: RAPM mean score=33.8, WAIS mean IQ=147.2). Analysis of brain activity during the performance of the intelligence task showed that both groups had brain activity in certain areas, including the left and right prefrontal cortex, parietal cortex, and anterior cingulate. The science high school group showed the highest activity in the right parietal cortex, which is related to visuo-spatial working memory, whereas the foreign language high school group showed the highest activity in the left prefrontal cortex, which is related to verbal working memory. The foreign language high school group showed higher brain activity than the science high school group in the left precentral gyrus which is related to the motion of the tongue and lips. These results show that the science high school group utilized the visuo-spatial area, whereas the foreign language high school group utilized the verbal area during the performance of the intelligence task. This suggests that the major thinking process differs depending on the gifted students' primary field of study, although they are doing the same task.
Keywords
Science high school; Foreign language high school; Intelligence; Brain activity; fMRI;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cereb. Cortex, 12, 477-485.   DOI   ScienceOn
2 Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107-127.   DOI   ScienceOn
3 Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87, 9868-9872.   DOI   ScienceOn
4 Pessoa, L., Guitierrez, E., Bandettini, P. A., & Ugerleider, G. L. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35, 975-987.   DOI
5 Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychol., 33, 43-63.   DOI   ScienceOn
6 Raven, J. C. (1980). Advanced progressive matrices set II. U.K.: Raven Ltd.
7 Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of working memory. Proc. Natl. Acad. Sci. USA, 95, 12061-12068.   DOI
8 Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning. Educational Researcher, 18, 8-14.   DOI
9 Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751-754.   DOI   ScienceOn
10 Wechsler, D. (1981). WAIS-R manual; Wechsler Adult Intelligence Scale-Revised. New York: The Psychological Corporation.
11 Witelson, S. F., Kigar, D. L., & Harvey, T. (1999). The exceptional brain of Albert Einstein. Lancet, 353, 2149-2153.   DOI
12 Choi, Y.Y., Shamosh, N.A., Cho, S.H., DeYoung, C.G., Lee, M.J., Lee, J.M., Kim, S.I., Cho, Z.H., Kim, K., Gray, J.R., & Lee, K.H. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. Journal of Neuroscience, 28(41), 10323-10329.   DOI
13 Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604-608.   DOI   ScienceOn
14 Fox, L. H., & Durden, W. G. (1982). Educating verbally gifted youth. Fastback 176. Bloomington, Indiana: Phi Delta Kappa Educational Foundation.
15 Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Hum. Brain Mapp., 2, 165-189.
16 Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nat. Neurosci., 6, 316-322.   DOI   ScienceOn
17 Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive neuroscience. New York: Norton.
18 Houde, O., & Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nat. Rev. Neurosci., 4, 507-514.   DOI
19 Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J., Paek, J., Browning, H., & Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199-217.   DOI   ScienceOn
20 Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57(5), 253-270.   DOI   ScienceOn
21 Kaufman, A. S. (2001). WAIS-III IQs, Horn's theory, and generational changes from young adulthood to old age. Intelligence, 29, 131-167.   DOI
22 배진호, 임채성 (2004). 초등학교 과학에서 '쾌적한 환경' 단원에 대한 4MAT 학습 모형의 학습양식 유형과 두뇌 기능성 유형 분석. 한국생물교육학회지, 32(2), 107-113.
23 성현숙 (2009). 과학영재고등학생의 과학과 영어과목에서의 학습전략 사용 및 동기의 차이와 학업수행과의 관계. 영재교육연구, 19(1), 95-117.
24 양기열, 이의진 (2011). 수학영재학생들의 유추를 통한 이차곡면의 탐구활동 분석. 영재교육연구, 21(2), 269-286.
25 유승식 (2001). 실전응용을 중심으로 한 기능 자기공명영상 실험. 서울: 도서출판 의학문화사.
26 이일선, 이준기, 권용주 (2010). 두뇌맞춤 지수 기여도 산출식의 개발 및 적용: 7학년 과학 '세포의 구조와 기능' 단원을 중심으로. 한국생물교육학회지, 38(4), 531-546.
27 조선희, 이건호, 김희백 (2007). 과학영재교육원 사사교육 대상자들의 지능과 창의력 수준 분석. 영재교육연구, 17(1), 123-143.
28 최선영, 장남기 (2003). 초등학생의 창의력, 학업성취도 및 과학관련 태도를 신장시킬 수 있는 전뇌순환학습 프로그램 개발과 적용 효과. 한국생물교육학회지, 31(4), 282-291.
29 Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D.C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49-62.   DOI
30 Belsky, J. K. (1990). The psychology of aging: Theory, research, and interventions. Pacific Grove: Brooks Cole Publishing Company.
31 Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci., 12, 1-47.
32 Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev., 97, 404-431.   DOI   ScienceOn
33 Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin.
34 김용진, 장남기 (2001). 중학교 과학 수업에서 두뇌순환학습 프로그램의 적용 효과. 한국생물교육학회지, 29(2), 186-194.
35 강승희, 조석희 (2004). 언어 영재교육의 필요성과 방향 탐색. 영재교육연구, 14(1), 91-114.
36 고은성, 이경화 (2011). 일반학급 학생들과의 비교를 통한 수학영재학급 학생들의 표본 개념 이해 수준 연구. 영재교육연구, 21(2), 287-307.
37 김경민, 차희영, 구슬애 (2011). 초등과학영재와 일반아동의 분류 능력 차이. 한국과학교육학회지, 31(5), 709-719.
38 김재영, 최선희 (2003). 두뇌기반학습원리에 기초한 초등 과학수업의 효과: 4학년 생명영역을 중심으로. 한국생물교육학회지, 31(2), 119-131.