Browse > Article

A Neurobiological Measure of General Intelligence in the Gifted  

Cho, Sun-Hee (Seoul National University)
Kim, Heui-Baik (Seoul National University)
Choi, Yu-Yong (Seoul National University)
Chae, Jeong-Ho (Catholic University)
Lee, Kun-Ho (Seoul National University)
Publication Information
Journal of Gifted/Talented Education / v.15, no.2, 2005 , pp. 101-125 More about this Journal
Abstract
We applied functional magnetic resonance imaging (fMRI) techniques to examine whether general intelligence (g) could be assessed using a neurobiological signal of the brain. Participants were students in a national science academy and several local high schools. They were administered diverse intelligence (RAPM and WAIS) and creativity tests (TTCT-figural and TTCT-verbal). Forty of them were scanned using fMRI while performing complex and simple g tasks. In brain regions of greater blood flow in complex compared with simple g tasks, the gifted group with an exceptional g level was not significantly different from the average group with an ordinary g level: both of them activated the lateral prefrontal, anterior cingulate, posterior parietal cortices. However, the activation levels of the gifted group were greater than those of the average group, particularly in the posterior parietal cortex. Correlation analysis showed that the activity of the posterior parietal cortex has the highest correlation ($(r=0.73{\sim}0.74)$) with individual g levels and other regions also have moderate correlation ($(r=0.53{\sim}0.66)$). On the other hand, two-sample t test showed a striking contrast in intelligence tests scores between the gifted and the average group, whereas it did not show in creativity tests scores. These results suggest that it is within the bounds of possibility that a neurobiological signal of the brain is used in the assessment of the gifted and also suggest that creativity has to be given a great deal of weight on the assessment of the gifted.
Keywords
assessment of the gifted; general intelligence; creativity; fMRI; posterior parietal cortex;
Citations & Related Records
연도 인용수 순위
  • Reference
1 교육인적자원부(2004). 창의적 인재 양성을 위한 수월성 교육종합대책
2 Anastasi, A. (1988). Psychological testing. New York: Macmillan Publishing Company
3 Beck, N. C., Horwitz, E., Seidenberg, M., Parker, J., & Frank, R. (1985). WAIS-R factor structure in psychiatric and general medical patients. Journal of Consulting and Clinical Psychology, 53, 402-405   DOI   ScienceOn
4 Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test measures: A theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev., 97, 404-431   DOI   ScienceOn
5 Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton Mifflin
6 Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb. Cortex, 10, 829-839   DOI   ScienceOn
7 Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nat. Neurosci., 6, 316-322   DOI   ScienceOn
8 Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nat. Rev. Neurosci., 5, 471-482   DOI   ScienceOn
9 Haier, R. J., Nathan, S. W., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31, 429-441   DOI   ScienceOn
10 Jung, R. E., Yeo, R. A., Chiulli, S. J., Sibbitt, W. L. J., Weers, D. C., Hart, B. L., & Brooks, W. M. (1999). Biochemical markers of cognition: A proton MR spectroscopy study of normal human brain. NeuroReport, 10, 3327-3331   DOI   ScienceOn
11 Lynn, R., & Irwing, P. (2004). Sex differences on the progressive matrices: A meta-analysis. Intelligence, 32, 481-498   DOI   ScienceOn
12 Raven, J. C., Court, J. H., & Raven, J. (1988). Manual for Raven's Progressive Matrices and Vocabulary Scales. London: Lewis
13 Stelzl, I., Merz, F., Ehlers, T., & Remer, H. (1995). The effect of schooling on the development of fluid and crystallized intelligence: A quasi-experimental study. Intelligence, 21, 279-296   DOI   ScienceOn
14 Renzulli, J. S. (1978). What makes giftedness? Re-examinating a definition. Phi Delta Kappan, 60, 180-184
15 Schmidt, F. L., & Hunter, J. E. (1998). The Validity and Utility of Selection Methods in Personnel Psychology: Practical and Theoretical Implications of 85 Years of Research Findings. Psychol. Bull., 124, 262-274   DOI   ScienceOn
16 Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning. Educational Researcher, 18, 8-14   DOI
17 영재교육진흥법시행령(2002)
18 영재교육진흥법(1999)
19 Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill
20 Torrance, E. P. (1999b). Torrance Tests of Creative Thinking: Thinking Creatively with Words, Form A. Bensenville, IL: Scholastic Testing Service
21 Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1996). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49-62
22 Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci., 12, 1-47
23 Johnson, W., Bouchard, T. J., Krueger, R. F., McGue, M., & Gottesman, I. I. (2004). Just one g: Consistent results from three test batteries. Intelligence, 32, 95-107   DOI   ScienceOn
24 Neisser, U., Boodoo, G., Bouchard, T. J. Jr., Boykin, A. W., Brody, N., Ceci, S. J., Halpern, D. F., Loehlin, J. C., Perloff, R., Sternberg, R. J., & Urbina, S. (1996). Intelligence: Knowns and unknowns. Am. Psychol., 51, 77-101   DOI
25 Gustafsson, J. E. (1984). A unifying model for the structure of intellectual abilities. Intelligence, 8, 179-203   DOI   ScienceOn
26 Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 87, 9868-9872   DOI   ScienceOn
27 Ghatan, P. H., Hsieh, J. C., Wirsen-Meurling, A., Wredling, R., Eriksson, L., Stone-Elander, S., Levander, S., & Ingvar, M. (1995). Brain activation induced by the perceptual maze test: A PET study of cognitive performance. NeuroImage, 2, 112-124   DOI   PUBMED   ScienceOn
28 Houde, O., & Tzourio-Mazoyer, N. (2003). Neural foundations of logical and mathematical cognition. Nat. Rev. Neurosci., 4, 507-514   DOI   PUBMED   ScienceOn
29 Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychol., 33, 43-63   DOI   ScienceOn
30 Woodcock, R. W. (1990). Theoretical foundations of the WJ-R measures of cognitive ability. Journal of Psychoeducational Assessment, 8, 231-258   DOI
31 Wallach, M. A., & Kogan, N. (1965). Modes of thinking in young children. New York: Holt, Rinehart and Winston
32 Alderton, D. L., & Larson, G. E. (1990). Dimensionality of Raven's Advanced Progressive Matrices items. Educ. Psychol. Meas., 50, 887-900   DOI
33 Esquivel, G. B., & Lopez, E. (1988). Correlations among measures of cognitive ability, creativity, and academic achievementfor gifted minority children. Perceptual and Motor Skills, 67, 395-398   DOI   ScienceOn
34 Jausovec, N., & Jausovec, K. (2000). Correlations between ERP parameters and intelligence: A reconsideration. Biol. Psychol. 55(2), 137-154   DOI   ScienceOn
35 Kaufman, A. S., & Lichtenberger, E. O. (1999). The essentials of WAIS-III assessment. New York: J. Wiley & Sons
36 Bors, D. A., & Strokes, T. L. (1998). Raven's Advanced Progressive Matrices: Norms for first-year university students and the development of a short form. Educ. Psychol. Meas., 58, 382-399   DOI   ScienceOn
37 Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163-183   DOI   ScienceOn
38 Parker, K. (1983). Factor analysis of the WAIS-R at nine age levels between 16 and 74 years. Journal of Consulting and Clinical Psychology, 51, 302-308   DOI   PUBMED   ScienceOn
39 Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of working memory. Proc. Natl. Acad. Sci. USA, 95, 12061-12068
40 Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57, 253-270   DOI   ScienceOn
41 Leckliter, I. N., Matarazzo, J. D., & Silverstein, A. B. (1986). A literature review of factor analytic studies of the WAIS-R. Journal of Clinical Psychology, 42, 332-342   DOI
42 Colom, R., Abad, F. J., García, L. F., & Juan-Espinosa, M. (2002). Education, Wechsler's full scale IQ, and g. Intelligence, 30, 449-462   DOI   ScienceOn
43 Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Hum. Brain Mapp., 2, 165-189
44 Gustafsson, J. E. (1988). Hierarchical models of individual differences in cognitive abilities. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 4, pp. 35-71). Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc
45 Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J., Paek, J., Browning, H., & Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12, 199-217   DOI   ScienceOn
46 Wechsler, D. (1981). WAIS-R manual; Wechsler Adult Intelligence Scale-Revised. New York: The Psychological Corporation
47 Cropley, A. J. (2000). Defining and measuring creativity: Are creativity tests worth using? Roeper Review, 23, 72-79   DOI   ScienceOn
48 Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: Aparametric study of relational complexity. Cereb. Cortex, 12. 477-485   DOI   ScienceOn
49 교육인적자원부, 16개 시.도 교육청, 한국교육개발원(2005). 영재교육 이렇게 하고 있습니다
50 Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. New York: Macmillan
51 Klingberg, T., O'Sullivan, B. T., & Roland, P. E. (1997). Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cereb. Cortex, 7, 465-471   DOI   ScienceOn
52 Cooper, E. (1991). A critique of six measures for assessing creativity. Journal of Creative Behavior, 25, 194-204   DOI
53 Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107-127   DOI   ScienceOn
54 Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal participation in problem solving in the Tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia, 41, 1668-1682   DOI   ScienceOn
55 Torrance, E. P. (1999a). Torrance Tests of Creative Thinking: Thinking Creatively with Pictures, Form A. Bensenville, IL: Scholastic Testing Service
56 Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkired, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425-433   DOI   ScienceOn
57 Jensen, A. R. (1991). Spearman's g and the problem of educational equality. Oxford Rev. Educ., 17, 169-187   DOI   ScienceOn
58 Yamamoto, K. (1964). Threshold of intelligence in academic achievement of highly creative students. The Journal of Experimental Education, 32, 401-405
59 Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386, 604-608   DOI   ScienceOn