Browse > Article
http://dx.doi.org/10.5808/GI.2013.11.4.230

Study of Modern Human Evolution via Comparative Analysis with the Neanderthal Genome  

Ahmed, Musaddeque (Department of Biological Sciences, Brock University)
Liang, Ping (Department of Biological Sciences, Brock University)
Abstract
Many other human species appeared in evolution in the last 6 million years that have not been able to survive to modern times and are broadly known as archaic humans, as opposed to the extant modern humans. It has always been considered fascinating to compare the modern human genome with that of archaic humans to identify modern human-specific sequence variants and figure out those that made modern humans different from their predecessors or cousin species. Neanderthals are the latest humans to become extinct, and many factors made them the best representatives of archaic humans. Even though a number of comparisons have been made sporadically between Neanderthals and modern humans, mostly following a candidate gene approach, the major breakthrough took place with the sequencing of the Neanderthal genome. The initial genome-wide comparison, based on the first draft of the Neanderthal genome, has generated some interesting inferences regarding variations in functional elements that are not shared by the two species and the debated admixture question. However, there are certain other genetic elements that were not included or included at a smaller scale in those studies, and they should be compared comprehensively to better understand the molecular make-up of modern humans and their phenotypic characteristics. Besides briefly discussing the important outcomes of the comparative analyses made so far between modern humans and Neanderthals, we propose that future comparative studies may include retrotransposons, pseudogenes, and conserved non-coding regions, all of which might have played significant roles during the evolution of modern humans.
Keywords
biological evolution; comparative genomics; humans; Neanderthals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975;188:107-116.   DOI
2 Hünemeier T, Ruiz-Linares A, Silveira A, Paixão-Côrtes VR, Salzano FM, Bortolini MC. Brief communication: Population data support the adaptive nature of HACNS1 sapiens/neandertal- chimpanzee differences in a limb expression domain. Am J Phys Anthropol 2010;143:478-481.   DOI   ScienceOn
3 Hadley D, Murphy T, Valladares O, Hannenhalli S, Ungar L, Kim J, et al. Patterns of sequence conservation in presynaptic neural genes. Genome Biol 2006;7:R105.   DOI
4 Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 2006;443: 167-172.   DOI   ScienceOn
5 Burbano HA, Green RE, Maricic T, Lalueza-Fox C, de la Rasilla M, Rosas A, et al. Analysis of human accelerated DNA regions using archaic hominin genomes. PLoS One 2012;7:e32877.   DOI
6 Batzer MA, Deininger PL. A human-specific subfamily of Alu sequences. Genomics 1991;9:481-487.   DOI
7 Batzer MA, Rubin CM, Hellmann-Blumberg U, Alegria- Hartman M, Leeflang EP, Stern JD, et al. Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 1995;247:418-427.   DOI   ScienceOn
8 Matera AG, Hellmann U, Schmid CW. A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 1990;10:5424-5432.   DOI
9 Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, et al. Alu insertion polymorphisms for the study of human genomic diversity. Genetics 2001;159:279-290.
10 Roy AM, Carroll ML, Kass DH, Nguyen SV, Salem AH, Batzer MA, et al. Recently integrated human Alu repeats: finding needles in the haystack. Genetica 1999;107:149-161.   DOI
11 Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prüfer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A 2007;104:14616-14621.   DOI   ScienceOn
12 Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet 2007;23:183-191.   DOI   ScienceOn
13 Wang X, Grus WE, Zhang J. Gene losses during human origins. PLoS Biol 2006;4:e52.   DOI   ScienceOn
14 Olson MV. When less is more: gene loss as an engine of evolutionary change. Am J Hum Genet 1999;64:18-23.   DOI   ScienceOn
15 Stedman HH, Kozyak BW, Nelson A, Thesier DM, Su LT, Low DW, et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 2004;428:415-418.   DOI   ScienceOn
16 Parikh H, Lyssenko V, Groop LC. Prioritizing genes for follow- up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus. BMC Med Genomics 2009;2:72.   DOI   ScienceOn
17 Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 2006;444:499-502.   DOI   ScienceOn
18 Boffelli D, Nobrega MA, Rubin EM. Comparative genomics at the vertebrate extremes. Nat Rev Genet 2004;5:456-465.   DOI   ScienceOn
19 Bejerano G, Haussler D, Blanchette M. Into the heart of darkness: large-scale clustering of human non-coding DNA. Bioinformatics 2004;20 Suppl 1:i40-i48.   DOI   ScienceOn
20 Hodgson JA, Disotell TR. No evidence of a Neanderthal contribution to modern human diversity. Genome Biol 2008;9:206.   DOI   ScienceOn
21 Hardy J, Pittman A, Myers A, Gwinn-Hardy K, Fung HC, de Silva R, et al. Evidence suggesting that Homo neanderthalensis contributed the H2 MAPT haplotype to Homo sapiens. Biochem Soc Trans 2005;33(Pt 4):582-585.   DOI   ScienceOn
22 Lari M, Rizzi E, Milani L, Corti G, Balsamo C, Vai S, et al. The microcephalin ancestral allele in a Neanderthal individual. PLoS One 2010;5:e10648.   DOI   ScienceOn
23 Akazawa T, Aoki K, Bar-Yosef O. Neandertals and Modern Humans in Western Asia. New York: Springer, 1999.
24 Semino O, Santachiara-Benerecetti AS, Falaschi F, Cavalli- Sforza LL, Underhill PA. Ethiopians and Khoisan share the deepest clades of the human Y-chromosome phylogeny. Am J Hum Genet 2002;70:265-268.   DOI   ScienceOn
25 Underhill PA, Passarino G, Lin AA, Shen P, Mirazón Lahr M, Foley RA, et al. The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann Hum Genet 2001;65(Pt 1):43-62.   DOI   ScienceOn
26 Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 2008;18:830-838.   DOI   ScienceOn
27 Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH Jr. Exon-trapping mediated by the human retrotransposon SVA. Genome Res 2009;19:1983-1991.   DOI   ScienceOn
28 Cruciani F, Santolamazza P, Shen P, Macaulay V, Moral P, Olckers A, et al. A back migration from Asia to sub-Saharan Africa is supported by high-resolution analysis of human Y-chromosome haplotypes. Am J Hum Genet 2002;70:1197- 1214.   DOI   ScienceOn
29 Beleza S, Gusmão L, Lopes A, Alves C, Gomes I, Giouzeli M, et al. Micro-phylogeographic and demographic history of Portuguese male lineages. Ann Hum Genet 2006;70(Pt 2): 181-194.   DOI   ScienceOn
30 Berniell-Lee G, Calafell F, Bosch E, Heyer E, Sica L, Mouguiama-Daouda P, et al. Genetic and demographic implications of the Bantu expansion: insights from human paternal lineages. Mol Biol Evol 2009;26:1581-1589.   DOI   ScienceOn
31 Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009;10:691-703.   DOI   ScienceOn
32 Kazazian HH Jr. Mobile elements: drivers of genome evolution. Science 2004;303:1626-1632.   DOI   ScienceOn
33 Wang J, Song L, Gonder MK, Azrak S, Ray DA, Batzer MA, et al. Whole genome computational comparative genomics: A fruitful approach for ascertaining Alu insertion polymorphisms. Gene 2006;365:11-20.   DOI   ScienceOn
34 Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P. dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 2006;27:323-329.   DOI   ScienceOn
35 Callinan PA, Batzer MA. Retrotransposable elements and human disease. Genome Dyn 2006;1:104-115.
36 Orlando L, Darlu P, Toussaint M, Bonjean D, Otte M, Hanni C. Revisiting Neandertal diversity with a 100,000 year old mtDNA sequence. Curr Biol 2006;16:R400-R402.   DOI   ScienceOn
37 Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, et al. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol 2004;2:E57.   DOI   ScienceOn
38 Noonan JP. Neanderthal genomics and the evolution of modern humans. Genome Res 2010;20:547-553.   DOI   ScienceOn
39 Lalueza-Fox C, Rompler H, Caramelli D, Staubert C, Catalano G, Hughes D, et al. A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 2007;318: 1453-1455.   DOI   ScienceOn
40 Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A, Bertranpetit J, et al. Genetic characterization of the ABO blood group in Neandertals. BMC Evol Biol 2008;8:342.   DOI   ScienceOn
41 Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 2008;18:610-621.   DOI   ScienceOn
42 Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 2009;325:318-321.   DOI   ScienceOn
43 Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science 2010;328:710-722.   DOI   ScienceOn
44 Gravina B, Mellars P, Ramsey CB. Radiocarbon dating of interstratified Neanderthal and early modern human occupations at the Chatelperronian type-site. Nature 2005;438:51-56.   DOI   ScienceOn
45 Mellars P, Gravina B, Bronk Ramsey C. Confirmation of Neanderthal/modern human interstratification at the Chatelperronian type-site. Proc Natl Acad Sci U S A 2007;104: 3657-3662.   DOI   ScienceOn
46 Zilhão J, d'Errico F, Bordes JG, Lenoble A, Texier JP, Rigaud JP. Analysis of Aurignacian interstratification at the Chatelperronian- type site and implications for the behavioral modernity of Neandertals. Proc Natl Acad Sci U S A 2006;103:12643- 12648.   DOI   ScienceOn
47 Trinkaus E, Moldovan O, Milota S, Bîlgăr A, Sarcina L, Athreya S, et al. An early modern human from the Pestera cu Oase, Romania. Proc Natl Acad Sci U S A 2003;100:11231-11236.   DOI   ScienceOn
48 Wall JD, Hammer MF. Archaic admixture in the human genome. Curr Opin Genet Dev 2006;16:606-610.   DOI   ScienceOn
49 Bailey SE, Weaver TD, Hublin JJ. Who made the Aurignacian and other early Upper Paleolithic industries? J Hum Evol 2009;57:11-26.   DOI   ScienceOn
50 Evans PD, Mekel-Bobrov N, Vallender EJ, Hudson RR, Lahn BT. Evidence that the adaptive allele of the brain size gene microcephalin introgressed into Homo sapiens from an archaic Homo lineage. Proc Natl Acad Sci U S A 2006;103:18178-18183.   DOI   ScienceOn
51 Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, et al. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 2007;17:1908- 1912.   DOI   ScienceOn
52 Boeke JD, Pickeral OK. Retroshuffling the genomic deck. Nature 1999;398:108-109, 111.   DOI   ScienceOn
53 Damert A, Raiz J, Horn AV, Lower J, Wang H, Xing J, et al. 5'-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 2009;19:1992- 2008.   DOI   ScienceOn
54 Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 2007;39:1140-1144.   DOI   ScienceOn
55 Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, et al. Inferring nonneutral evolution from human- chimp-mouse orthologous gene trios. Science 2003;302: 1960-1963.   DOI   ScienceOn
56 Bird CP, Stranger BE, Liu M, Thomas DJ, Ingle CE, Beazley C, et al. Fast-evolving noncoding sequences in the human genome. Genome Biol 2007;8:R118.   DOI
57 Ponce de León MS, Golovanova L, Doronichev V, Romanova G, Akazawa T, Kondo O, et al. Neanderthal brain size at birth provides insights into the evolution of human life history. Proc Natl Acad Sci U S A 2008;105:13764-13768.   DOI   ScienceOn
58 Mithen SJ. The Prehistory of the Mind: A Search for the Origins of Art, Religion and Science. Illustrated ed. London: Thames and Hudson, 1996.
59 Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, et al. Analysis of one million base pairs of Neanderthal DNA. Nature 2006;444:330-336.   DOI   ScienceOn
60 Stringer C, Gamble C. In Search of the Neanderthals: Solving the Puzzle of Human Origins. London: Thames & Hudson, 1993.
61 Green RE, Malaspinas AS, Krause J, Briggs AW, Johnson PL, Uhler C, et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 2008;134:416-426.   DOI   ScienceOn
62 Noonan JP, Coop G, Kudaravalli S, Smith D, Krause J, Alessi J, et al. Sequencing and analysis of Neanderthal genomic DNA. Science 2006;314:1113-1118.   DOI   ScienceOn
63 Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, et al. Genomic sequencing of Pleistocene cave bears. Science 2005;309:597-599.   DOI   ScienceOn
64 Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 2006;311:392-394.   DOI   ScienceOn
65 Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Paabo S. Neandertal DNA sequences and the origin of modern humans. Cell 1997;90:19-30.   DOI   ScienceOn
66 McDougall I, Brown FH, Fleagle JG. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 2005;433:733-736.   DOI   ScienceOn
67 Lu J, Ruhf ML, Perrimon N, Leder P. A genome-wide RNA interference screen identifies putative chromatin regulators essential for E2F repression. Proc Natl Acad Sci U S A 2007; 104:9381-9386.   DOI   ScienceOn
68 Hublin JJ. Out of Africa: modern human origins special feature: the origin of Neandertals. Proc Natl Acad Sci U S A 2009; 106:16022-16027.   DOI   ScienceOn
69 Grun R, Stringer C, McDermott F, Nathan R, Porat N, Robertson S, et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J Hum Evol 2005;49:316-334.   DOI   ScienceOn
70 Stringer CB, Hublin J. New age estimates for the Swanscombe hominid, and their significance for human evolution. J Hum Evol 1999;37:873-877.   DOI   ScienceOn
71 Krause J, Orlando L, Serre D, Viola B, Prufer K, Richards MP, et al. Neanderthals in central Asia and Siberia. Nature 2007;449:902-904.   DOI   ScienceOn
72 Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005;437:69-87.   DOI   ScienceOn
73 Rhesus Macaque Genome Sequencing and Analysis Consortium, Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 2007;316:222-234.   DOI   ScienceOn
74 Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, et al. Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2006;2:e168.   DOI   ScienceOn
75 Prabhakar S, Noonan JP, Pääbo S, Rubin EM. Accelerated evolution of conserved noncoding sequences in humans. Science 2006;314:786.   DOI   ScienceOn
76 Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, et al. Human-specific gain of function in a developmental enhancer. Science 2008;321:1346-1350.   DOI   ScienceOn
77 Lopez-Valenzuela M, Ramírez O, Rosas A, García-Vargas S, de la Rasilla M, Lalueza-Fox C, et al. An ancestral miR-1304 allele present in Neanderthals regulates genes involved in enamel formation and could explain dental differences with modern humans. Mol Biol Evol 2012;29:1797-1806.   DOI   ScienceOn
78 Pennisi E. Paleogenetics. Cloned Neandertals still in the realm of sci-fi. Science 2010;328:682-683.   DOI   ScienceOn
79 Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T, Somel M, et al. A humanized version of FOXP2 affects cortico- basal ganglia circuits in mice. Cell 2009;137:961-971.   DOI   ScienceOn
80 Wade N. Scientists in germany draft Neanderthal genome. The New York Times 2009 Feb 12:A12.
81 Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A. Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol Lett 2009;5:809-811.   DOI   ScienceOn
82 Finlayson C, Pacheco FG, Rodríguez-Vidal J, Fa DA, Gutierrez López JM, Santiago Pérez A, et al. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 2006; 443:850-853.   DOI   ScienceOn
83 Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-range enhancers. Science 2003; 302:413.   DOI   ScienceOn
84 Semino O, Magri C, Benuzzi G, Lin AA, Al-Zahery N, Battaglia V, et al. Origin, diffusion, and differentiation of Y-chromosome haplogroups E and J: inferences on the neolithization of Europe and later migratory events in the Mediterranean area. Am J Hum Genet 2004;74:1023-1034.   DOI   ScienceOn
85 Currat M, Excoffier L. Modern humans did not admix with Neanderthals during their range expansion into Europe. PLoS Biol 2004;2:e421.   DOI   ScienceOn
86 Ovchinnikov IV, Götherström A, Romanova GP, Kharitonov VM, Lidén K, Goodwin W. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 2000;404:490-493.   DOI   ScienceOn