Browse > Article
http://dx.doi.org/10.5808/GI.2012.10.1.1

Survey of the Applications of NGS to Whole-Genome Sequencing and Expression Profiling  

Lim, Jong-Sung (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University)
Choi, Beom-Soon (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University)
Lee, Jeong-Soo (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University)
Shin, Chan-Seok (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
Yang, Tae-Jin (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University)
Rhee, Jae-Sung (Department of Chemistry, College of Natural Sciences, Hanyang University)
Lee, Jae-Seong (Department of Chemistry, College of Natural Sciences, Hanyang University)
Choi, Ik-Young (National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University)
Abstract
Recently, the technologies of DNA sequence variation and gene expression profiling have been used widely as approaches in the expertise of genome biology and genetics. The application to genome study has been particularly developed with the introduction of the nextgeneration DNA sequencer (NGS) Roche/454 and Illumina/ Solexa systems, along with bioinformation analysis technologies of whole-genome $de$ $novo$ assembly, expression profiling, DNA variation discovery, and genotyping. Both massive whole-genome shotgun paired-end sequencing and mate paired-end sequencing data are important steps for constructing $de$ $novo$ assembly of novel genome sequencing data. It is necessary to have DNA sequence information from a multiplatform NGS with at least $2{\times}$ and $30{\times}$ depth sequence of genome coverage using Roche/454 and Illumina/Solexa, respectively, for effective an way of de novo assembly. Massive shortlength reading data from the Illumina/Solexa system is enough to discover DNA variation, resulting in reducing the cost of DNA sequencing. Whole-genome expression profile data are useful to approach genome system biology with quantification of expressed RNAs from a wholegenome transcriptome, depending on the tissue samples. The hybrid mRNA sequences from Rohce/454 and Illumina/Solexa are more powerful to find novel genes through $de$ $novo$ assembly in any whole-genome sequenced species. The $20{\times}$ and $50{\times}$ coverage of the estimated transcriptome sequences using Roche/454 and Illumina/Solexa, respectively, is effective to create novel expressed reference sequences. However, only an average $30{\times}$ coverage of a transcriptome with short read sequences of Illumina/Solexa is enough to check expression quantification, compared to the reference expressed sequence tag sequence.
Keywords
$de$ $novo$ assembly; expression profiling; multiplatform; NGS; resequencing; whole genome;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adriaens ME, Jaillard M, Eijssen LM, Mayer CD, Evelo CT. An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies. BMC Genomics 2012;13:42.   DOI
2 Yang KE, Kwon J, Rhim JH, Choi JS, Kim SI, Lee SH, et al. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: a comparative proteomics and microarray study. Mol Cells 2011;32:99-106.   DOI   ScienceOn
3 Ekblom R, Balakrishnan CN, Burke T, Slate J. Digital gene expression analysis of the zebra finch genome. BMC Genomics 2010;11:219.   DOI
4 Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011;27:578-579.   DOI   ScienceOn
5 Lieberman TD, Michel JB, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 2011;43:1275-1280.   DOI   ScienceOn
6 Harper M, Lee CJ. Genome-wide analysis of mutagenesis bias and context sensitivity of N-methyl-N'-nitro-Nnitrosoguanidine (NTG). Mutat Res 2012;731:64-67.   DOI
7 Zhang A, Yang M, Hu P, Wu J, Chen B, Hua Y, et al. Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics 2011;12:523.   DOI
8 Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 2011; 477:289-294.   DOI   ScienceOn
9 Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G, Paszkiewicz K, et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S A 2011;108:15258-15263.   DOI   ScienceOn
10 Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J, Mittnik A, et al. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci U S A 2011;108:E746-E752.   DOI
11 Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008;18:1851-1858.   DOI   ScienceOn
12 Pelleymounter LL, Moon I, Johnson JA, Laederach A, Halvorsen M, Eckloff B, et al. A novel application of pattern recognition for accurate SNP and indel discovery from high-throughput data: targeted resequencing of the glucocorticoid receptor co-chaperone FKBP5 in a Caucasian population. Mol Genet Metab 2011;104:457-469.   DOI   ScienceOn
13 Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev 2006;16:545-552.   DOI   ScienceOn
14 Allard MW, Luo Y, Strain E, Li C, Keys CE, Son I, et al. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. BMC Genomics 2012;13:32.   DOI
15 Schroder J, Maus I, Trost E, Tauch A. Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 2011;12:545.   DOI
16 Park DH, Thapa SP, Choi BS, Kim WS, Hur JH, Cho JM, et al. Complete genome sequence of Japanese erwinia strain ejp617, a bacterial shoot blight pathogen of pear. J Bacteriol 2011;193:586-587.   DOI   ScienceOn
17 Seo YS, Lim J, Choi BS, Kim H, Goo E, Lee B, et al. Complete genome sequence of Burkholderia gladioli BSR3. J Bacteriol 2011;193:3149.   DOI   ScienceOn
18 Nam SH, Kim A, Choi SH, Kang A, Kim DW, Kim RN, et al. Genome sequence of Leuconostoc carnosum KCTC 3525. J Bacteriol 2011;193:6100-6101.   DOI   ScienceOn
19 Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of the giant panda genome. Nature 2010;463:311-317.   DOI   ScienceOn
20 Fan L, Bo S, Chen H, Ye W, Kleinschmidt K, Baumann HI, et al. Genome sequence of Bacillus subtilis subsp. spizizenii gtP20b, isolated from the Indian ocean. J Bacteriol 2011;193:1276-1277.   DOI   ScienceOn
21 Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, et al. The genome of woodland strawberry (Fragaria vesca ). Nat Genet 2011;43:109-116.   DOI   ScienceOn
22 Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, et al. De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 2010;6:e1000891.   DOI
23 Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437:376-380.
24 Jiang Y, Lu J, Peatman E, Kucuktas H, Liu S, Wang S, et al. A pilot study for channel catfish whole genome sequencing and de novo assembly. BMC Genomics 2011;12:629.   DOI
25 Li J, Jiang J, Leung FC. 6-10x pyrosequencing is a practical approach for whole prokaryote genome studies. Gene 2012;494:57-64.   DOI   ScienceOn
26 Cleary DF, Smalla K, Mendonca-Hagler LC, Gomes NC. Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing. PLoS One 2012;7:e29380.   DOI
27 Hong PY, Croix JA, Greenberg E, Gaskins HR, Mackie RI. Pyrosequencing-based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro-heterogeneity. PLoS One 2011;6: e25042.   DOI
28 Matsumura H, Yoshida K, Luo S, Kimura E, Fujibe T, Albertyn Z, et al. High-throughput SuperSAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS One 2010;5:e12010.   DOI
29 Schaik VW, Top J, Riley DR, Boekhorst J, Vrijenhoek JE, Schapendonk CM, et al. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 2010;11:239.   DOI
30 Shendure J, Mitra RD, Varma C, Church GM. Advanced sequencing technologies: methods and goals. Nat Rev Genet 2004;5:335-344.
31 Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010;11:220.   DOI
32 Kumar S, Blaxter ML. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010;11:571.   DOI
33 Toulza E, Shin MS, Blanc G, Audic S, Laabir M, Collos Y, et al. Gene expression in proliferating cells of the dinoflagellate Alexandrium catenella (Dinophyceae). Appl Environ Microbiol 2010;76:4521-4529.   DOI   ScienceOn
34 Hestand MS, Klingenhoff A, Scherf M, Ariyurek Y, Ramos Y, van Workum W, et al. Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Res 2010;38:e165.   DOI
35 Bai X, Zhang W, Orantes L, Jun TH, Mittapalli O, Mian MA, et al. Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines . PLoS One 2010;5:e11370.   DOI
36 Downs KP, Shen Y, Pasquali A, Beldorth I, Savage M, Gallier K, et al. Characterization of telomeres and telomerase expression in Xiphophorus. Comp Biochem Physiol C Toxicol Pharmacol 2012;155:89-94.   DOI   ScienceOn
37 Ghiselli F, Milani L, Chang PL, Hedgecock D, Davis JP, Nuzhdin SV, et al. De novo assembly of the Manila clam Ruditapes philippinarum transcriptome provides new insights into expression bias, mitochondrial doubly uniparental inheritance and sex determination. Mol Biol Evol 2012;29:771-786.   DOI   ScienceOn
38 Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, et al. De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 2011;52:1501-1514.   DOI   ScienceOn
39 Hsiao YY, Chen YW, Huang SC, Pan ZJ, Fu CH, Chen WH, et al. Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genomics 2011;12:360.   DOI
40 Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res 1992;20:1679-1684.   DOI   ScienceOn
41 Chen SH, Chen RY, Xu XL, Xiao WB. Microarray analysis and phenotypic response of Pseudomonas aeruginosa PAO1 under hyperbaric oxyhelium conditions. Can J Microbiol 2012;58:158-169.   DOI   ScienceOn