Browse > Article
http://dx.doi.org/10.5808/GI.2011.9.4.161

Gene Expression Analysis of Gα13-/- Knockout Mouse Embryos Reveals Perturbations in Gα13 Signaling Related to Angiogenesis and Hypoxia  

Park, Ji-Hwan (Department of Molecular Science and Technology, Ajou University)
Choi, Sang-Dun (Department of Molecular Science and Technology, Ajou University)
Abstract
Angiogenesis is regulated by a large number of molecules and complex signaling mechanisms. The G protein $G{\alpha}_{13}$ is a part of this signaling mechanism as an endothelial cell movement regulator. Gene expression analysis of $G{\alpha}_{13}$ knockout mouse embryos was carried out to identify the role of $G{\alpha}_{13}$ in angiogenesis signaling during embryonic development. Hypoxia-inducible response factors including those acting as regulators of angiogenesis were over expressed, while genes related to the cell cycle, DNA replication, protein modification and cell-cell dissociation were under expressed. Functional annotation and network analysis indicate that $G{\alpha}_{13}{^{-/-}}$ embryonic mice were exposed to hypoxic conditions. The present analysis of the time course highlighted the significantly high levels of disorder in the development of the cardiovascular system. The data suggested that hypoxia-inducible factors including those associated with angiogenesis and abnormalities related to endothelial cell division contributed to the developmental failure of $G{\alpha}_{13}$ knockout mouse embryos.
Keywords
angiogenesis; gene expression; G protein $G{\alpha}_{13}$; G protein signaling; hypoxia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Abramovitch, R., Tavor, E., Jacob-Hirsch, J., Zeira, E., Amariglio, N., Pappo, O., Rechavi, G., Galun, E., and Honigman, A. (2004). A pivotal role of cyclic AMP-responsive element binding protein in tumor progression. Cancer Res. 64, 1338-1346.   DOI
2 Arato-Ohshima, T. and Sawa, H. (1999). Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int. J. Cancer 83, 387-392.   DOI
3 Armentano, M., Filosa, A., Andolfi, G., and Studer, M. (2006). COUP-TFI is required for the formation of commissural projections in the forebrain by regulating axonal growth. Development 133, 4151-4162.   DOI
4 Arnaoutov, A. and Dasso, M. (2003). The Ran GTPase regulates kinetochore function. Dev. Cell. 5, 99-111.   DOI
5 Tsopanoglou, N.E. and Maragoudakis, M.E. (1999). On the mechanism of thrombin-induced angiogenesis. Potentiation of vascular endothelial growth factor activity on endothelial cells by up-regulation of its receptors. J. Biol. Chem. 274, 23969-23976.   DOI
6 Voyno-Yasenetskaya, T., Conklin, B.R., Gilbert, R.L., Hooley, R., Bourne, H.R., and Barber, D.L. (1994). G alpha 13 stimulates Na-H exchange. J. Biol. Chem. 269, 4721-4724.
7 Voyno-Yasenetskaya, T.A., Pace, A.M., and Bourne, H.R. (1994). Mutant alpha subunits of G12 and G13 proteins induce neoplastic transformation of Rat-1 fibroblasts. Oncogene 9, 2559-2565.
8 Wang, L., Kwak, J.H., Kim, S.I., He, Y., and Choi, M.E. (2004). Transforming growth factor-beta1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38alpha and p38delta mitogen- activated protein kinase-dependent pathway in murine mesangial cells. J. Biol. Chem. 279, 33213-33219.   DOI
9 Wang, V., Davis, D.A., Haque, M., Huang, L.E., and Yarchoan, R. (2005). Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 65, 3299-3306.   DOI
10 Yang, J., Bian, W. and Jing, N.H. (1997). Nestin mRNA expression during the development of mouse central nervous system. Sheng Li Xue Bao 49, 657-665.
11 Yu, H., Iyer, R.K., Yoo, P.K., Kern, R.M., Grody, W.W., and Cederbaum, S.D. (2002). Arginase expression in mouse embryonic development. Mech. Dev. 115, 151-155.   DOI
12 Simon, M.I., Strathmann, M.P., and Gautam, N. (1991). Diversity of G proteins in signal transduction, Science 252, 802-808.   DOI
13 Seghezzi, G., Patel, S., Ren, C.J., Gualandris, A., Pintucci, G., Robbins, E.S., Shapiro, R.L., Galloway, A.C., Rifkin, D.B., and Mignatti, P. (1998). Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659-1673.   DOI
14 Shan, D., Chen, L., Wang, D., Tan, Y.C., Gu, J.L., and Huang, X.Y. (2006). The G protein G alpha(13) is required for growth factor-induced cell migration. Dev. Cell 10, 707-718.   DOI
15 Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843-845.   DOI
16 Spiegelberg, B.D. and Hamm, H.E. (2007). Roles of G-protein-coupled receptor signaling in cancer biology and gene transcription. Curr. Opin. Genet. Dev. 17, 40-44.   DOI
17 Suzuki, N., Nakamura, S., Mano, H., and Kozasa, T. (2003). Galpha 12 activates Rho GTPase through tyrosine- phosphorylated leukemia-associated RhoGEF. Proc. Natl. Acad. Sci. U.S.A. 100, 733-738.   DOI
18 Oldham, W.M. and Hamm, H.E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60-71.   DOI
19 Tai, Y.T., Podar, K., Gupta, D., Lin, B., Young, G., Akiyama, M., and Anderson, K.C. (2002). CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells. Blood 99, 1419-1427.   DOI
20 Tazuke, S.I., Mazure, N.M., Sugawara, J., Carland, G., Faessen, G.H., Suen, L.F., Irwin, J.C., Powell, D.R., Giaccia, A.J., and Giudice, L.C. (1998). Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc. Natl. Acad. Sci. U.S.A. 95, 10188-10193.   DOI
21 Pandya, N.M., Dhalla, N.S., and Santani, D.D. (2006). Angiogenesis--a new target for future therapy. Vascul. Pharmacol. 44, 265-274.   DOI
22 Plonk, S.G., Park, S.K., and Exton, J.H. (1998). The alpha-subunit of the heterotrimeric G protein G13 activates a phospholipase D isozyme by a pathway requiring Rho family GTPases. J. Biol. Chem. 273, 4823-4826.   DOI
23 Potente, M., Urbich, C., Sasaki, K., Hofmann, W.K., Heeschen, C., Aicher, A., Kollipara, R., DePinho, R.A., Zeiher, A.M., and Dimmeler, S. (2005). Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J. Clin. Invest. 115, 2382-2392.   DOI
24 Radhika, V., Onesime, D., Ha, J.H., and Dhanasekaran, N. (2004). Galpha13 stimulates cell migration through cortactin- interacting protein Hax-1. J. Biol. Chem. 279, 49406-49413.   DOI
25 Ramirez-Solis, R., Davis, A.C., and Bradley, A. (1993). Gene targeting in embryonic stem cells. Meth. Enzymol. 225, 855-878.   DOI
26 Ribatti, D., Nico, B., Spinazzi, R., Vacca, A., and Nussdorfer, G.G. (2005). The role of adrenomedullin in angiogenesis. Peptides 26, 1670-1675.   DOI
27 Ling, Q., Jacovina, A.T., Deora, A., Febbraio, M., Simantov, R., Silverstein, R.L., Hempstead, B., Mark, W.H., and Hajjar, K.A. (2004). Annexin II regulates fibrin homeostasis and neoangiogenesis in vivo. J. Clin. Invest. 113, 38-48.
28 Riobo, N.A. and Manning, D.R. (2005). Receptors coupled to heterotrimeric G proteins of the G12 family. Trends Pharmacol. Sci. 26, 146-154.   DOI
29 Ruppel, K.M., Willison, D., Kataoka, H., Wang, A., Zheng, Y.W., Cornelissen, I., Yin, L., Xu, S.M., and Coughlin, S.R. (2005). Essential role for Galpha13 in endothelial cells during embryonic development. Proc. Natl. Acad. Sci. U.S.A. 102, 8281-8286.   DOI
30 Schwarzer, R., Tondera, D., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2005). REDD1 integrates hypoxia- mediated survival signaling downstream of phosphatidylinositol 3-kinase. Oncogene 24, 1138-1149.   DOI
31 Manes, T., Zheng, D.Q., Tognin, S., Woodard, A.S., Marchisio, P.C., and Languino, L.R. (2003). Alpha(v)beta3 integrin expression up-regulates cdc2, which modulates cell migration. J. Cell Biol. 161, 817-826.   DOI
32 Manjunath, S., Lee, C.H., VanWinkle, P., and Bailey-Serres, J. (1998). Molecular and biochemical characterization of cytosolic phosphoglucomutase in maize. Expression during development and in response to oxygen deprivation. Plant Physiol. 117, 997-1006.   DOI
33 Martin-Rendon, E., Hale, S.J., Ryan, D., Baban, D., Forde, S.P., Roubelakis, M., Sweeney, D., Moukayed, M., Harris, A.L., Davies, K., and Watt, S.M. (2007). Transcriptional profiling of human cord blood CD133+ and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells 25, 1003-1012.   DOI
34 Olbryt, M., Jarzab, M., Jazowiecka-Rakus, J., Simek, K., Szala, S., and Sochanik, A. (2006). Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro. Gene Expr. 13, 191-203.   DOI
35 Maruyama, K., Mori, Y., Murasawa, S., Masaki, H., Takahashi, N., Tsutusmi, Y., Moriguchi, Y., Shibazaki, Y., Tanaka, Y., Shibuya, M., Inada, M., Matsubara, H., and Iwasaka, T. (1999). Interleukin-1 beta upregulates cardiac expression of vascular endothelial growth factor and its receptor KDR/flk-1 via activation of protein tyrosine kinases. J. Mol. Cell. Cardiol. 31, 607-617.   DOI
36 Nabors, L.B., Suswam, E., Huang, Y., Yang, X., Johnson, M.J., and King, P.H. (2003). Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res. 63, 4181-4187.
37 Offermanns, S., Mancino, V., Revel, J.P., and Simon, M.I. (1997). Vascular system defects and impaired cell chemokinesis as a result of Galpha13 deficiency. Science 275, 533-536.   DOI
38 Hoang, V.M., Foulk, R., Clauser, K., Burlingame, A., Gibson, B.W., and Fisher, S.J. (2001). Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 40, 4077-4086.   DOI
39 Huang, J.S., Dong, L., Kozasa, T., and Le Breton, G.C. (2007). Signaling through G(alpha)13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. J. Biol. Chem. 282, 10210-10222.   DOI
40 Ito, D., Walker, J.R., Thompson, C.S., Moroz, I., Lin, W., Veselits, M.L., Hakim, A.M., Fienberg, A.A., and Thinakaran, G. (2004). Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol. Cell. Biol. 24, 9456-9469.   DOI
41 Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., Kozutsumi, Y., and Kannagi, R. (2004). Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. U.S.A. 101, 8132-8137.   DOI   ScienceOn
42 Jho, E.H. and Malbon, C.C. (1997). Galpha12 and Galpha13 mediate differentiation of P19 mouse embryonal carcinoma cells in response to retinoic acid. J. Biol. Chem. 272, 24461-24467.   DOI
43 Kim, M.S., Lee, S.M., Kim, W.D., Ki, S.H., Moon, A., Lee, C.H., and Kim, S.G. (2007). G alpha 12/13 basally regulates p53 through Mdm4 expression. Mol. Cancer Res. 5, 473-484.   DOI
44 Kitamura, K., Singer, W.D., Star, R.A., Muallem, S., and Miller, R.T. (1996). Induction of inducible nitric-oxide synthase by the heterotrimeric G protein Galpha13. J. Biol. Chem. 271, 7412-7415.   DOI
45 Kozasa, T., Jiang, X., Hart, M.J., Sternweis, P.M., Singer, W.D., Gilman, A.G., Bollag, G., and Sternweis, P.C. (1998). p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280, 2109-2111.   DOI
46 Dhanasekaran, N., Prasad, M.V., Wadsworth, S.J., Dermott, J.M., and van Rossum, G. (1994). Protein kinase C-dependent and -independent activation of Na+/H+ exchanger by G alpha 12 class of G proteins. J. Biol. Chem. 269, 11802-11806.
47 Dutt, P., Nguyen, N., and Toksoz, D. (2004). Role of Lbc RhoGEF in Galpha12/13-induced signals to Rho GTPase. Cell. Signal. 16, 201-209.   DOI
48 Filipek, A. (2006). S100A6 and CacyBP/SIP - two proteins discovered in ehrlich ascites tumor cells that are potentially involved in the degradation of beta-catenin. Chemotherapy 52, 32-34.   DOI
49 Giatromanolaki, A., Koukourakis, M.I., Gatter, K.C., Harris, A.L., and Sivridis, E. (2007). BNIP3 expression in endometrial cancer relates to active hypoxia inducible factor 1a pathway and prognosis. J. Clin. Pathol. 61, 217-220.   DOI
50 Fukuhara, S., Murga, C., Zohar, M., Igishi, T., and Gutkind, J.S. (1999). A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J. Biol. Chem. 274, 5868-5879.   DOI
51 Gohla, A., Harhammer, R., and Schultz, G. (1998). The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J. Biol. Chem. 273, 4653-4659.   DOI
52 Gohla, A., Offermanns, S., Wilkie, T.M., and Schultz, G. (1999). Differential involvement of Galpha12 and Galpha13 in receptor-mediated stress fiber formation. J. Biol. Chem. 274, 17901-17907.   DOI
53 Granata, R., Trovato, L., Lupia, E., Sala, G., Settanni, F., Camussi, G., Ghidoni, R., and Ghigo, E. (2007). Insulinlike growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms. J. Thromb. Haemost. 5, 835-845.   DOI
54 Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., Sternweis, P.C., and Bollag, G. (1998). Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 280, 2112-2114.   DOI
55 Berestetskaya, Y.V., Faure, M.P., Ichijo, H., and Voyno- Yasenetskaya, T.A. (1998). Regulation of apoptosis by alpha- subunits of G12 and G13 proteins via apoptosis signal- regulating kinase-1. J. Biol. Chem. 273, 27816-27823.   DOI
56 Bosco, M.C., Puppo, M., Santangelo, C., Anfosso, L., Pfeffer, U., Fardin, P., Battaglia, F., and Varesio, L. (2006). Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J. Immunol. 177, 1941-1955.   DOI
57 Collignon, J., Sockanathan, S., Hacker, A., Cohen-Tannoudji, M., Norris, D., Rastan, S., Stevanovic, M., Goodfellow, P.N., and Lovell-Badge, R. (1996). A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122, 509-520.
58 Buhl, A.M., Johnson, N.L., Dhanasekaran, N., and Johnson, G.L. (1995). G alpha 12 and G alpha 13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J. Biol. Chem. 270, 24631-24634.   DOI
59 Chauvet, C., Bois-Joyeux, B., Berra, E., Pouyssegur, J., and Danan, J.L. (2004). The gene encoding human retinoic acid-receptor-related orphan receptor alpha is a target for hypoxia-inducible factor 1. Biochem. J. 384, 79-85.   DOI
60 Chen, B., Nelson, D.M., and Sadovsky, Y. (2006). N-myc down-regulated gene 1 modulates the response of term human trophoblasts to hypoxic injury. J. Biol. Chem. 281, 2764-2772.   DOI
61 Cormier-Regard, S., Nguyen, S.V., and Claycomb, W.C. (1998). Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J. Biol. Chem. 273, 17787-17792.   DOI
62 Demartino, G.N. and Gillette, T.G. (2007). Proteasomes: machines for all reasons. Cell 129, 659-662.   DOI
63 Dhanasekaran, D.N. (2006). Transducing the signals: a G protein takes a new identity. Sci. STKE 2006, pe31.