Browse > Article

The Atom of Evolution  

Bhak, Jonghwa (Biomatics Lab, BioSystems, KAIST, NGIC, KRIBB, BiO Institute, OITEK Inc.)
Bolser, Dan (BiO Institute, MRC-DUNN)
Park, Daeui (OITEK Inc.)
Cho, Yoobok (OITEK Inc.)
Yoo, Kiesuk (OITEK Inc.)
Lee, Semin (Biomatics Lab, BioSystems, KAIST)
Gong, SungSam (Biomatics Lab, BioSystems, KAIST)
Jang, Insoo (NGIC, KRIBB)
Park, Changbum (Biomatics Lab, BioSystems, KAIST)
Huston, Maryana (BiO Institute)
Choi, Hwanho (BiO Institute)
Abstract
The main mechanism of evolution is that biological entities change, are selected, and reproduce. We propose a different concept in terms of the main agent or atom of evolution: in the biological world, not an individual object, but its interactive network is the fundamental unit of evolution. The interaction network is composed of interaction pairs of information objects that have order information. This indicates a paradigm shift from 3D biological objects to an abstract network of information entities as the primary agent of evolution. It forces us to change our views about how organisms evolve and therefore the methods we use to analyze evolution.
Keywords
interactome; comparative interactomics; network biology; interfaceome; biological information objects;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bolser, D., Panos, D, Harrington, R., Park, J., and Schroeder, M., (2003). Visualisation and Graph- theoretic Analysis of a Large-scale Protein Structural Interactome., BMC Bioinformatics 445, 1471-2105
2 Bray, D. (1995). Protein molecules as computational elements in living cells. Nature 376, 307-312   DOI   PUBMED   ScienceOn
3 Chia, J.M, and Kolatkar, P.R. (2004). Implications for domain fusn protein-protein interactions based on structuralio information. BMC Bioinformatics 26, 161 (Epub ahead of print)
4 Chothia, C. (1976). The nature of the accessible and buried surfaces in proteins. J.MoI.BioI. 105, 1-14   DOI
5 Enright, A.J., Iliopoulos, I., Kyrpides, N.C., and Ouzounis, C.A. (1999). Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86-90   DOI   ScienceOn
6 Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., and Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome, Y. Proc. Natl. Acad. Sci. USA 98, 4569-4574. Epub   DOI   ScienceOn
7 Ju, B.H., Park, B., Park J.H., and Han K. (2003). Visualization and analysis of protein interactions. Bioinformatics 19, 317-318   DOI   ScienceOn
8 Gardiner, K., Davisson M.T., and Crnic, L.S. (2004). Building protein interaction maps for Down's syndrome. Brief Funct Genomic Proteomic 3, 142-156   DOI   ScienceOn
9 Lu, H., Zhu, X., Liu, H., Skoger$\phi$, G., Zang, L., Zang, Y., Cai, L., Zhao, Y., Sun, S., Xu, J., Bu, D., and Chen, R. (2004). The interactome as a tree-an attempt to visualize the protein-protein interaction network in yeast. Nucleic Acids Research 32, 4804-4811   DOI   ScienceOn
10 Kim, H., Park, J., and Han, K, (2003). Predicting Protein Interactions in Human by Homologous Interactions in Yeast. Lecture Notes in Computer Science 2637, 159-165   DOI   ScienceOn
11 Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., and Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751-753   DOI   PUBMED   ScienceOn
12 Moon, H.S., Bhak, J., Lee, K.H., and Lee, D. (2005). Architecture of Basic Building Blocks in Protein and Domain Structural Interaction Networks. Bioinformatics (in press)
13 Poupon, A. (2004). Voronoi and Voronoi-related tessellations in studies of protein structure and interaction. Curr. Opio. Stru. Biol. 14, 1-9   DOI   ScienceOn
14 Jeong, H., Mason, S.P., Barabasi, A.L., and Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature 411, 41-42   DOI   ScienceOn
15 Raicu V., Jansma D.B., Miller R.J., and Friesen J.D. (2004). Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem J. Sep 7;Pt. (Epub ahead of print)
16 Richard, F.M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1-14   DOI   PUBMED
17 Albert, R., Jeong, H., and Barabasi, A.L. (2000). Error and attack tolerance of complex networks. Nature 406, 378-382   DOI   ScienceOn
18 Lawrence, M.C. and Colman, P.M. (1993). Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946-950   DOI   ScienceOn
19 Schof, J.W. (1993). Microfossils of the EarIy Archean Apex Chert: New Evidence of the Antiquity of life. Science 260, 640-646   DOI   PUBMED   ScienceOn
20 Albert, R. and Othmer, H.G., (2003). The topology of the regulat- ory interactions predicts the expression pattern of the seg- ment polarity genes in Drosophila melanogaster. J.Theor. Biol. 223, 1-18   DOI   ScienceOn
21 Chothia, C. and Janin, J. (1975). Principles of protein-protein recognition. Nature 256, 705-708   DOI   ScienceOn
22 Richards, F.M. (1977). Area, volumes, Packing and protein structures, Ann. Rev. Biophys. Bioeng. 6, 151-176   DOI   PUBMED   ScienceOn
23 Ng, S.K. and Tan, S.H. (2004). Discovering protein-protein interactions. J. Bioinform Comput. Biol. 1, 711-741   DOI   ScienceOn
24 Park, J., Lappe, M., and Teichmann, S.A. (2001). Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the PDB and yeast. J. Mol. Biol. 30, 307, 929-938
25 Lappe, M., Park, J., Niggemann, 0., and Holm, L. (2001). Generating protein interaction maps from incomplete data: application to Fold assignment. Bioinformatics VoI.17 SuppI.1, S149-S156   DOI   ScienceOn
26 Bolser, D.M. and Park, J. (2003). Biological Network Evolution Hypothesis Applied to Protein Structural Interactome. Genomics & Informatics 7-19
27 Walhout, A.J., Boulton, S.J., and Vidal, M. (2000). Yeast two hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17, 88-94   DOI   ScienceOn
28 Doolittle, R.F., Feng, D.F., Tsang, S., Cho, G., and Little, E., (1996). Determining Divergence Times of the Major Kingdoms of Living Organisms with a Protein Clock. Science 27-1, 470-477
29 Jones, S., Marin, A., and Thornton, J.M. (2000). Protein domain interfaces: characterization and comparison with oligomeric protein interfaces. Protein Engineering 13, 77-82   DOI   PUBMED
30 Caffrey, D.R., Somaroo, S., Hughes, J.D., Mintseris, J., and Huang, E.S. (2004). Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Science 13, 190-202   DOI   ScienceOn
31 Jones, S. and Thornton, J.M. (1997). Analysis of Protein-protein interaction sites using surface patches. J.MoI.Biol. 272, 121-132   DOI   ScienceOn
32 Promislow, D.E. (2004). Protein networks, pleiotropy and the evolution of senescence. Proc. R. Soc. Lond. B. Biol. Sci. 271, 1225-1234   DOI   ScienceOn
33 Miller, S., Janin, J., Lesk, A.M., and Chotia, C. (1987). Interior and surface of monomeric proteins. J. Mol. Biol. 196, 641-656   DOI   PUBMED
34 Gagneur, J, Krause, R., Bouwmeester, T., and Casari, G. (2004). Modular decomposition of protein-protein interaction networks. Genome Biol. 5, R57. Epub   DOI   PUBMED
35 Lehner, B. and Fraser, F. (2004). A first-draft human protein-interaction map. Genome Biology 5:R63 doi:10.1186/ gb-2004-5-9-r63   DOI   PUBMED
36 Albert, R. and Baraba'si, A.-L (2002). Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47-97   DOI   ScienceOn
37 Jones, S. and Thornton, J.M. (1997). Principle of protein- protein interactions. Proc. Natl. Acad. Sci. USA 93, 13-20   DOI   ScienceOn
38 Sanchez, C., Lachaize, C., Janody, F., Bellon, B., Roder, L, Euzenat, J., Rechenmann, F., and Jacq, B. (1999). Grasping at molecular interactions and genetic networksin Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res. 27, 89-94   DOI   ScienceOn
39 Batagelj, V. and Mrvar, A. (2001). Pajek-analysis and visualization of large networks. LNCS 2265, 477-478
40 Park, J., Dietmann, S., Heger, A., and Holm, L. (2000). Estimating the significance of sequence order in protein secondary structure prediction. Bioinformatics 16, 978-987   DOI   ScienceOn
41 Varshney A., Brooks, F., and Richardson, D. (1995). Defining, Computing, and Visualizing Molecular Interfaces. Proceedings IEEE Visualization 95, 36-43
42 Uetz, P., Giot, L, Cagney, G., Mansfield, T.A., Judson, RS., Knight, J.R., Lockshon, D., Narayan, V., Shnivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., and Rothberg, J.M. (2000). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623-627   DOI   ScienceOn
43 Kim, W., Bolser, D.M., and Park, J., (2004). Large scale co-evolution analysis of Protein Structural Interlogues using the global Protein Structural Interactome Map (PSIMAP). Bioinformatics 20, 1138-1150   DOI   ScienceOn
44 Park, J. and Bolser, D., (2001). Conservation of protein interaction network in evolution. Genome Informatics 12, 135-140
45 Searls, D.B. (1993). The Computational Linguistics of Biological Sequences, In Artificial Intelligence and Molecular Biology, L. Hunter, ed. (AAAI Press) PP.47-120
46 Darwin, C. (1859). On the origins of species, London, http://pages.britishlibrary.net/charles.darwin/texts/origin1859/origin_fm.html
47 Iragne, F., Nikolski, M., Mathieu, B., Auber, D., and Sherman D. (2004). ProViz: Protein Interaction Visualization and Exploration. Bioinformatics (Epub ahead of print)