Browse > Article
http://dx.doi.org/10.15207/JKCS.2021.12.8.301

Antioxidant activity and cell bioactivity of Sargassum macrocarpum extract  

Kim, Sook-hee (K-Beauty industry fusion, Konkuk Continuing Education Center, Konkuk University)
Publication Information
Journal of the Korea Convergence Society / v.12, no.8, 2021 , pp. 301-308 More about this Journal
Abstract
In this study, the antioxidant and anti-inflammatory, anti-obesity properties, of Sargassum macrocarpum extracts were identified to assess the availability of Sargassum macrocarpum extracts as cosmetics and foods. To measure antioxidant activity, we conducted TPC, TFC, DPPH, ABTS, NO, FRAP. For polyphenols, 30.81±1.12 mg/g was shown. Flavonoids showed 25.72±0.94 mg/g. The DPPH experiment showed an antioxidant function of 6.746 mg ascorbic acid/g extract, the ABTS experiment showed an antioxidant function of 15.59 mg ascorbic acid/g extract, and the NO experiment showed an antioxidant function of 6.781 mg ascorbic acid/g extract. In FRAP, 1 mg of the Sargassum macrocarpum extract showed a reduction of 4.573±0.097 ㎍ of ascorbic acid. In cytotoxicity experiments, Sargassum macrocarpum extracts showed a cell survival rate of more than 80% at all concentrations, and an inflammatory inhibition of 25.95±0.85%, and an lipid accumulation inhibition of 29.75±2.35%. These results indicate that Sargassum macrocarpum extract is available as an anti-inflammatory cosmetic and anti-obesity inner beauty material. In future studies, it is necessary to study how pure substances containing Sargassum macrocarpum extract affect antioxidants, anti-inflammatory and anti-obesity
Keywords
Sargassum macrocarpum; Anti-obesity; Antioxidant; Anti-inflammation; Inner beauty;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. A. Monsur. (2011). Anti-inflammatory compounds of macro algae origin: A review. Journal of Medicinal Plants Research, 5(33), 7146-7154. DOI:10.5897/JMPRX11.018   DOI
2 E. M. Balboa, E. Conde, A. Moure, E. Falque & H. Dominguez. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food chemistry, 138(2-3), 1764-1785. DOI: 10.1016/j.foodchem.2012.11.026   DOI
3 A. M. Gamal-Eldeen, E. F. Ahmed & M. A. Abo-Zeid. (2009). In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food and Chemical Toxicology, 47(6), 1378-1384. DOI:10.1016/j.fct.2009.03.016   DOI
4 S. Ananthi, H. R. B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan & H. R. Vasanthi. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food and chemical toxicology, 48(1), 187-192. DOI:10.1016/j.fct.2009.09.036   DOI
5 A. Pekal & K. Pyrzynska. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782. DOI : 10.1007/s12161-014-9814-x   DOI
6 G. C. Jagetia & M. S. Baliga. (2004). The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. Journal of Medicinal Food, 7(3), 343-348. DOI: 10.4014/kjmb.1409.09006   DOI
7 C. S. Kwak, S. A. Kim & M. S. Lee. (2005). The Correlation of Antioxidative Effects of 5 Korean Common Edible Seaweeds and Total Polyphenol Content. Journal of the Korean Society of Food Science and Nutrition, 34(8), 1143-1150. DOI:10.3746/jkfn.2005.34.8.1143   DOI
8 R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. Rice-Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. DOI : 10.1016/S0891-5849(98)00315-3   DOI
9 B. Alexander, D. J. Browse, S. J. Reading & I. S. Benjamin. (1999). A simple and accurate mathematical method for calculation of the EC50. Journal of pharmacological and toxicological methods, 41(2-3), 55-58. DOI:10.1016/S1056-8719(98)00038-0   DOI
10 Z. Demirel, F. F. Yilmaz-Koz, U. N. Karabay-Yavasoglu, G. Ozdemir & A. Sukatar. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628. DOI:10.2298/JSC0906619D   DOI
11 M. N. A. Khan, J. Y. Cho, M. C. Lee, J. Y. Kang, N. G. Park, H. Fujii & Y. K. Hong, Y. K. (2007). Isolation of two anti-inflammatory and one pro-inflammatory polyunsaturated fatty acids from the brown seaweed Undaria pinnatifida. Journal of Agricultural and Food Chemistry, 55(17), 6984-6988. DOI:10.1021/jf071791s   DOI
12 L. Wang, H. W. Yang, G. Ahn, X. Fu, J. Xu, X. Gao & Y. J. Jeon. (2021). In Vitro and In Vivo Anti-Inflammatory Effects of Sulfated Polysaccharides Isolated from the Edible Brown Seaweed, Sargassum fulvellum. Marine Drugs, 19(5), 277. DOI: 10.3390/md19050277   DOI
13 J. H. Oh & Y. K. Lee. (2015). Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line. The East Asian Society of Dietary Life, 25(6), 990-998. DOI:10.17495/easdl.2015.12.25.6.990   DOI
14 H. Maeda, M. Hosokawa, T. Sashima, N. Takahashi, T. Kawada & K. Miyashita. (2006). Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells. International journal of molecular medicine, 18(1), 147-152. DOI:10.3892/ijmm.18.1.147   DOI
15 A. Ratz-Lyko, J. Arct & K. Pytkowska. (2012). Methods for evaluation of cosmetic antioxidant capacity. Skin Research and Technology, 18(4), 421-430. DOI:10.1111/j.1600-0846.2011.00588.x   DOI
16 M. S. Blois. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200.   DOI
17 H. Masaki. (2010). Role of antioxidants in the skin: anti-aging effects. Journal of dermatological science, 58(2), 85-90. DOI:10.1016/j.jdermsci.2010.03.003   DOI
18 W. C. Lim. (2020). Study on the role of AMPK on the obesity by inflammation. Asian Journal of Physical Education of Sport Science(AJPESS), 8(3), 187-196.   DOI
19 K. Karimi, T. H. Lindgren, C. A. Koch & R. T. Brodell. (2016). Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Reviews in Endocrine and Metabolic Disorders, 17(3), 389-403. DOI:10.1007/s11154-016-9393-9   DOI
20 M. Wlodarczyk & G. Nowicka. (2019). Obesity, DNA damage, and development of obesity-related diseases. International journal of molecular sciences, 20(5), 1146. DOI:10.3390/ijms20051146   DOI
21 E. Cadenas & K. J. Davies. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free radical biology and medicine, 29(3-4), 222-230. DOI:10.1016/S0891-5849(00)00317-8   DOI
22 J. K. Salmon, C. A. Armstrong & J. C. Ansel. (1994). The skin as an immune organ. Western journal of medicine, 160(2), 146.
23 J. D. Bos. (1997). The skin as an organ of immunity. Clinical and Experimental Immunology, 107, 3-5.
24 G. Barja. (2014). The mitochondrial free radical theory of aging. Progress in molecular biology and translational science, 127, 1-27. DOI:10.1016/B978-0-12-394625-6.00001-5   DOI
25 M. Schieber & N. S. Chandel. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462. DOI:10.1016/j.cub.2014.03.034   DOI
26 P. Di Meglio, G. K. Perera & F. O. Nestle. (2011). The multitasking organ: recent insights into skin immune function. Immunity, 35(6), 857-869. DOI:10.1016/j.immuni.2011.12.003   DOI