Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.9.297

Convergence Study for Effect of Probiotics Ingestion and Aerobic Exercise with Different Intensities on Motor Learning and Bodyweight in Adolescence  

Park, Ki-Jun (Department of Special Education, Dankook University)
Kim, June-Chul (Texas A&M University-San Antonio)
Publication Information
Journal of the Korea Convergence Society / v.11, no.9, 2020 , pp. 297-303 More about this Journal
Abstract
The purpose of this study is to investigate the effects of aerobic exercise and probiotics ingestion on motor learning and body weight in female mice during adolescence. The subjects were divided into six groups of variables, such as non-exercise, moderate, high-intensity exercise, probiotics ingestion, and non-probiotics, and then treated for four weeks. The vertical grid test was conducted before and after the treatment to evaluate motor learning and bodyweight. The high-intensity exercise and probiotics ingestion group showed fastest up, rotation, and down rate than the non-exercise group (p<.001). Also, a group that treated exercise and probiotics tended to record speedier performance than those that performed the only exercise. Comparing weight changes, the weight gain of a group that performed only moderate-intensity exercise was higher than that of a non-probiotics and non-exercise group (p=.032). Taken together, aerobic exercise during adolescence can help improve motor learning, and more efficient motor learning can be achieved when combined with probiotics ingestion.
Keywords
Probiotics; Treadmill exercise; Verticalgrid test; Motor learning; Bodyweight;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. C. Huang, C. C. Wei, C. C. Huang, W. L. Chen & H. Y. Huang. (2019). The Beneficial Effects of Lactobacillus plantarum PS128 on High-Intensity, Exercise-Induced Oxidative Stress, Inflammation, and Performance in Triathletes. Nutrients, 11(2), 353. DOI : 10.3390/nu11020353   DOI
2 A. J. Montiel-Castro, R. M. G. Cervantes, G. B. Ruiseco & G. P. Lopez. (2013). The microbiota gut brain axis: neurobehavioral correlates, health and sociality. Frontiers in Integrative neuroscience, 7(70), 1-16. DOI : 10.3389/fnint.2013.00070I.
3 A. Marin et al. (2017). Microbiota alteration is associated with the development of stress induced despair behavior. Scientific Reports, 7, 7. DOI : 10.1038/srep43859   DOI
4 M. L. Park. (2018). Probiotic Lactobacillus fermentum JDFM216 improves cognitive behavior and longevity by regulating immune response. Doctoral dissertation. JBNC University, Jeonju.
5 J. Choi, Y. K. Kim & P. L. Han. (2019). Extracellular vesicles derived from Lactobacillus plantarum increase BDNF Expression in cultured hippocampal neurons and produce antidepressant like effects in mice. Experimental Neurobiology, 28(2), 158-171. DOI : 10.5607/en.2019.28.2.158   DOI
6 Y. W. Liu et al. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Resesrch. 1631, 1-12. DOI : 10.1016/j.brainres.2015.11.018   DOI
7 J. Dhaliwal et al. (2018). Lactobacillus plantarum MTCC 9510 supplementation protects from chronic unpredictable and sleep deprivation-induced behaviour, biochemical and selected gut microbial aberrations in mice. Journal of Applied Microbiology, 125(1), 257-269. DOI : 10.1111/jam.13765   DOI
8 J. Luo, T. Wang, S. Liang, X. Hu, W. Li & F. Jin. (2014). Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Science China. Life Science, 57(3), 327-335. DOI : 10.1007/s11427-014-4615-4   DOI
9 N. A. Castillo, G. Perdigon & A. M. LeBlanc. (2011). Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiology, 11(1), 177. DOI : 10.1186/1471-2180-11-177   DOI
10 Y. Guo et al. (2019). Prophylactic Effects of Bifidobacterium adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Frontiers in Behavioral Neuroscience, 13(126). DOI : 10.3389/fnbeh.2019.00126
11 V. Schefer & M. I. Talan. (1996). Oxygen consumption in adult and aged C57BL/6J mice during acute treadmill exercise of different intensity. Experimental Gerontology, 31(3), 387-392. DOI : 10.1016/0531-5565(95)02032-2   DOI
12 S. T. Kim, H. J. Son, J. H. Choi, I. J. Ji & O. Y. Hwang. (2010). Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson's disease. Brain Research, 8(1306), 176-183. DOI : 10.1016/j.brainres.2009.09.103
13 J. H. Kim. (2015). Effects of Aerobic Exercise Intensity on Growth Hormone and Serotonin in Adolescent. The Korean Society Of Sports Science. 24(1), 1257-1267. UCI : G704-001369.2015.24.1.034
14 V. S. Valentinuzzi et al. (1998). Automated measurement of mouse freezing behavior and its use for quantitative trait locus analysis of contextual fear conditioning in (BALB/cJ x C57BL/6J)F2 mice. Learning & Memory, 5(4), 391-403.
15 S. K. Powers, W. B. Nelson & M. B. Hudson. (2011). Exercise-induced Oxidative Stress in Humans: Cause and Consequences. Free Radical Biology and Medicine, 51(5), 942-950. DOI : 10.1016/j.freeradbiomed.2010.12.009   DOI
16 T. Imai, S. Seki, H. Dobashi, T. Ohkawa, Y. Habu & H. Hiraide. (2002). Effect of weight loss on T-cell receptor-mediated T-cell function in elite athletes. Medicine and science in Sports and Exercise, 34(2), 245-250. DOI : 10.1097/00005768-200202000-00011   DOI
17 T. Kullisaar, M. Zilmer, M. Mikelsaar, T. Vihalemm, H. Annuk, C. Kairane & A. Kilk. (2002). Two antioxidative lactobacilli strains as promising probiotics. International Journal of Food Microbiology, 72(3), 215-224. DOI :10.1016/s0168-1605(01)00674-2   DOI
18 Y. M. Chen et al. (2016). Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients, 8(4), 205. DOI : 10.3390/nu8040205   DOI
19 J. Y. Kim. (2014). The Study of Physical Activity Level on Serum BDNF and Cognitive Function in Adolescence. Korean Society Of Growth And Development, 22(2), 119-125. UCI : G704-001365.2014.22.2.002
20 T. W. Rowland. (2005). Children's exercise physiology- 2nd(ed). Champaign, IL: Human Kinetics.
21 C. H. Hillman, K. I. Erickson & A. F. Kramer. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58-65. DOI : 10.1038/nrn2298   DOI
22 K. Lambourne & P. Tomporowski. (2010). The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Research, 23(1341), 12-24. DOI : 10.1016/j.brainres.2010.03.091
23 C. R. R. Alves, V. H. Tessaro, L. A. C. Teixeira, K. Murakava, H. Roschel, B. Gualano & M. Y. Takito. (2014). Influence of acute high-intensity aerobic interval exercise bout on selective attention and short-term memory tasks. Perceptual and motor skills, 118(1), 63-72. DOI : 10.2466/22.06.PMS.118k10w4   DOI
24 T. McMorris, J. Sproule, A. Turner & B. J. Hale. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: a meta-analytical comparison of effects. Physiology & Behavior, 102, 421-428. DOI : 10.1016/j.physbeh.2010.12.007   DOI
25 J. Brisswalter, M. Collardeau & A. Rene. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32, 555-566. DOI : 10.2165/00007256-200232090-00002   DOI
26 K. Kashihara, T. Maruyama, M. Murota & Y. Nakahara. (2009). Positive effects of acute and moderate physical exercise on cognitive function. Journal of Physiological Anthropology, 28(4), 155-164. DOI : 10.2114/jpa2.28.155   DOI
27 C. S. Mang, N. J. Snow, K. P. Wadden, K. L. Campbell & L. A. Boyd. (2016). High intensity aerobic exercise enhances motor memory retrieval. Medicine and science in sports and exercise, 48(12), 2477-2486. DOI : 10.1249/MSS.0000000000001040   DOI
28 M. D. Cook et al. (2015). Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology & Cell Biology, 94(2), 158-163. DOI : 10.1038/icb.2015.108   DOI
29 J. M. Allen, L. J. Mailing & G. M. Niemiro. (2018). Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Medicine & Science in Sports & Exercise, 50(4), 747-757. DOI : 10.1249/MSS.0000000000001495   DOI
30 J. Chen, Y. Guo, Y. Gui & D. Xu. (2018). Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids in Health and Disease, 17(17). DOI : 10.1186/s12944-017-0653-9
31 S. Sporn, T. P. Hein & M. H. Ruiz. (2018). Bursts and variability of beta oscillations mediate the effect of anxiety on motor exploration and motor learning. bioRxiv. DOI : 10.1101/442772
32 E. Anderson & G. Shivakumar. (2013). Effects of exercise and physical activity on anxiety. Frontiers in Psychiatry, 4(27). DOI : 10.3389/fpsyt.2013.00027
33 M. Wegner, I. Helmich, S. Machado, A. E. Nardi, O. Arias-Carrion & H. Budde. (2014). Effects of exercise on anxiety and depression disorders: review of meta-analyses and neurobiological mechanisms. CNS Neurological Disorders, 13(6), 1002-1014. DOI : 10.2174/1871527313666140612102841   DOI
34 L. R. McCabe, R. Irwin, L. Schaefer & R. A. Britton. (2013). Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. Journal of Cellular Physiology, 228(8), 1793-1798. DOI : 10.1002/jcp.24340   DOI
35 J. Scheiman et al. (2019). Meta-omics analysis of elite athletes identifies a perforance enhancing microbe that functions via lactate metabolism. Nature Medicine, 25(7), 1104-1109. DOI : 10.1038/s41591-019-0485-4   DOI