Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.9.175

A Convergent Investigation on the Air flow in Driving According to a Cargo Container and the Wind Deflector  

Choi, Kye-Kwang (Department of Metal Mold Design Engineering, Kongju national University)
Cho, Jae-Ung (Division of Mechanical & Automotive Engineering, Kongju National University)
Publication Information
Journal of the Korea Convergence Society / v.11, no.9, 2020 , pp. 175-180 More about this Journal
Abstract
In this study, the freight vehicles were modelled and the flow analysis on the existence or non-existence of a cargo container and the wind deflector were carried out. Based on the driving speed of 100 km/hr, at all models A, B and C, the highest flow rate was shown between 58 m/s and 59 m/s at the top of the model shape. All models A, B and C showed the highest pressure of air resistance between 652Pa and 671Pa at the front of the model geometry. The maximum pressure of model A is considered to be the smallest, with the least flow resistance to speed compared to models B and C. Therefore, it can be seen that model A has an advantageous condition for air resistance in terms of fuel costs. Unlike model B which causes the rapid flow resistance at the cargo compartment, model C can be found to flow a little more smoothly on the streamlined wind deflector. So, the flow air at a streamlined shape is considered to be more advantageous in terms of air resistance than at angular shape. By applying the research analysis result on the air flow in driving according to a cargo container and the wind deflector, it is seen that this study is adequate at the practical efficient design and aesthetic convergence.
Keywords
Freight vehicle; Cargo container; Wind deflector; Air flow; Flow resistance; Convergence;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 H. C. Lee & J. U. Cho. (2014). A Study on Air Flow Analysis due to the Shape of Automotive Body. Journal of the Korea Convergence Society, 5(2), 19-23. DOI : 10.15207/JKCS.2014.5.2.019   DOI
2 B. S. Oh & J. U. Cho. (2019). Convergence Study on Durability Analysis of Scooter Seat. Journal of the Korea Convergence Society, 10(6), 165-170. DOI : 10.15207/JKCS.2019.10.6.165   DOI
3 J. H. Lee & J. U. Cho. (2015). Study on Convergence Technique through Flow Analysis at the Flexible Joint of the Pipe Laying. Journal of the Korea Convergence Society, 6(3), 13-18. DOI : 10.15207/JKCS.2015.6.3.013   DOI
4 S. W. Park, I. S. Choi, K. C. Noh, S. P. Ryu & K. S. Yoon. (2012). An Experimental Study on Measurement of Flow Coefficient Using the Steady-Flow Test Rig. Journal of the Korean Society of Marine Engineering, 36(4), 423-429. DOI : 10.5916/jkosme.2012.36.4.423   DOI
5 D. W. Jeong, Y. S. Won & S. H. Kang. (2019). Comparison Study on Aerodynamic Performance and Wake Flow Field for a MW-Class Wind Turbine Model. Journal of the Korean Society of Visualization, 17(2), 32-38. DOI : 10.5407/jksv.2019.17.2.032   DOI
6 C. H. Choi, J. G. Noh & J. H. Kim. (2010). Numerical Simulation of Cavitating Flow Around Turbopump Inducer. The KSFM Journal of Fluid Machinery, 13(3), 49-53. DOI : 10.5293/KFMA.2010.13.3.049   DOI
7 J. U. Cho. (2015). Study on Convergence Technique through the Flow Analytical Study inside the Faucet for Bathroom. Journal of the Korea Convergence Society, 6(2), 37-42. DOI : 10.15207/JKCS.2015.6.2.037   DOI
8 H. J. Kim & S. H. Kim. (2015). A Study on Air Flow Characteristics of Mid-mower for Tractor(I). Journal of the Korean Society of Manufacturing Process Engineers, 14(3), 27-35. DOI : 10.14775/ksmpe.2015.14.3.027   DOI
9 C. S. Won, N. K. Hur & S. H. Kwon. (2013). Flow Analysis of Automotive Oil Pump of Gerotor Type. The KSFM Journal of Fluid Machinery, 6(4), 7-13. DOI : 10.5293/KFMA.2003.6.4.007
10 S. H. Jo, J. I. Park & K. W. Nam. (2006). Numerical Simulation in the IC Engine Lubricating Gerotor Oil Pump. Transactions of the Korean Society of Mechanical Engineers B, 30(10), 1019-1025. DOI : 10.3795/KSME-B.2006.30.10.1019   DOI
11 J. L. Cui, M. H. Chey & S. I. Kim. (2016). Seismic Performance of Urban Structures with Various Horizontal Irregularities using Equivalent Static Analysis. Journal of Convergence for Information Technology, 6(1), 25-32.
12 S. C. Yoo. (2018). Development of the Design and Manufacturing Technologies of the Experimental Four-Valve SI Engine for In-Cylinder Air Flow Study Using the Laser Based Flow Diagnostic Techniques. Journal of the Korean Society of Mechanical Technology, 20(3), 377-382. DOI : 10.17958/ksmt.20.3.201806.377   DOI
13 C. R. Lee & B. H. Kim. (2018). Flow Analysis of Cylindrical Helical Water Turbine for Micro Hydro-power. Journal of the Korean Society of Mechanical Technology, 20(2), 187-193. DOI : 10.17958/ksmt.20.2.201804.187   DOI
14 S. W. Jung, S. H. Park, M. J. Song & Y. Lee. (2018). Flow Characteristics of Double-Venturi Abrasive Blasting Nozzle. Journal of the Korean Society of Manufacturing Process Engineers, 17(2), 8-14. DOI : 10.14775/ksmpe.2018.17.2.008
15 W. B. Lee, S. H. Ryu, W. Y. Hao & B. P. Kyung. (2015). Dismantling Simulation of Nuclear Reactor Using Partial Mesh Cutting Method for 3D Model. Journal of Digital Convergence, 13(4), 303-310.   DOI