Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.6.043

Design and Implementation of 60 GHz Wi-Fi for Multi-gigabit Wireless Communications  

Yoon, Jung-Min (Department of Electrical and Computer Engineering, Seoul National University)
Jo, Ohyun (Department of Computer Science, Chungbuk National University)
Publication Information
Journal of the Korea Convergence Society / v.11, no.6, 2020 , pp. 43-49 More about this Journal
Abstract
In spite of the notable advancements of millimeter wave communication technologies, the 60 GHz Wi-Fi is still not widespread yet, mainly due to the high limitation of coverage. Conventionally, it has been hardly possible to support a high data rate with fast beam adaptation while keeping atmospheric beamforming coverage. To solve these challenges in the 60 GHz communication system, holistic system designs are considered. we implemented an enhanced design LDPC decoder enabling 6.72 Gbps coded-throughput with minimal implementation loss, and our proposed phase-tracking algorithm guarantees 3.2 dB performance gain at 1 % PER in the case of 16 QAM modulation and LDPC code-rate 3/4.
Keywords
Future Wi-Fi; mmWave beamforming; IEEE 802.11ad; 60 GHz; System level design; Practical implementation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 IEEE 802.11 Working Group. (1999). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher-speed physical layer in the 5GHz band. IEEE Std 802.11.
2 Singh, H., Oh, J., Kweon, C., Qin, X., Shao, H. R. & Ngo, C. (2008). A 60 GHz wireless network for enabling uncompressed video communication. IEEE Communications Magazine, 46(12), 71-78.   DOI
3 Verma, L., Fakharzadeh, M. & Choi, S. (2013). Wifi on steroids: 802.11 ac and 802.11 ad. IEEE Wireless Communications, 20(6), 30-35.   DOI
4 Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IEEE, 34(5), 254-256.
5 Anderson, C. R. & Rappaport, T. S. (2004). In-building wideband partition loss measurements at 2.5 and 60 GHz. IEEE transactions on wireless communications, 3(3), 922-928.   DOI
6 Wu, S. H., Chiu, L. K., Lin, K. Y. & Chang, T. H. (2013). Robust hybrid beamforming with phased antenna arrays for downlink SDMA in indoor 60 GHz channels. IEEE transactions on wireless communications, 12(9), 4542-4557.   DOI
7 Mansour, M. M. & Shanbhag, N. R. (2003). High-throughput LDPC decoders. IEEE transactions on very large scale integration (VLSI) Systems, 11(6), 976-996.   DOI
8 Hajimiri, A., Komijani, A., Natarajan, A., Chunara, R., Guan, X. & Hashemi, H. (2004). Phased array systems in silicon. IEEE Communications Magazine, 42(8), 122-130.
9 Gallager, R. (1962). Low-density parity-check codes. IEEE Transactions on information theory, 8(1), 21-28.   DOI
10 Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P. & Hu, X. Y. (2005). Reduced-complexity decoding of LDPC codes. IEEE transactions on communications, 53(8), 1288-1299.   DOI
11 Cui, Z., Wang, Z. & Liu, Y. (2009). High-throughput layered LDPC decoding architecture. IEEE transactions on very large scale integration (VLSI) systems, 17(4), 582-587.   DOI
12 Huemer, M., Witschnig, H. & Hausner, J. (2003, December). Unique word based phase tracking algorithms for SC/FDE-systems. In GLOBECOM'03. IEEE Global Telecommunications Conference, 1, 70-74.
13 Ding, Y. R. & Cheng, Y. J. (2019). A Tri-band Shared-Aperture Antenna for 2.4/5.2-GHz Wi-Fi Application with MIMO Function and 60-GHz Wi-Gig Application with Beam-Scanning Function. IEEE Transactions on Antennas and Propagation.
14 Maltsev, A., Maslennikov, R., Sevastyanov, A., Lomayev, A. & Khoryaev, A. (2010, April). Statistical channel model for 60 GHz WLAN systems in conference room environment. In Proceedings of the Fourth European Conference on Antennas and Propagation, pp. 1-5).
15 Jo, O., Hong, W., Choi, S. T., Chang, S., Kweon, C., Oh, J. & Cheun, K. (2014). Holistic design considerations for environmentally adaptive 60 GHz beamforming technology. IEEE Communications Magazine, 52(11), 30-38.   DOI
16 Jo, O., Kim, J. J., Yoon, J., Choi, D. & Hong, W. (2017). Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beamforming systems. IEEE Transactions on Antennas and Propagation, 65(12), 6646-6655.   DOI
17 Jo, O., Chang, S., Kweon, C., Oh, J. & Cheun, K. (2015). 60 GHz wireless communication for future Wi-Fi. ICT Express, 1(1), 30-33.   DOI
18 Jo, O. & Yoon, J. (2017). Spatial reuse algorithm using interference graph in millimeter wave beamforming systems. ETRI Journal, 39(2), 255-263.   DOI
19 Al-Khaffaf, D. A. J. & Alsahlany, A. M. (2019). 60 GHz Millimetre wave/10 Gbps Transmission for Super Broadband Wi-Fi Network. Journal of Communications, 14(4).
20 Fierro, L. A., Maggi, E. C., Vazquez, A. A. & Schkolnik, D. (2020). Empirical Results for Human-Induced Shadowing Events for Indoor 60 GHz Wireless Links. IEEE Access, 8, 44522-44533.   DOI
21 Qin, X., Yuan, X., Zhang, Z., Tian, F., Hou, Y. T. & Lou, W. (2019). Joint User-AP Association and Resource Allocation in Multi-AP 60-GHz WLAN. IEEE Transactions on Vehicular Technology, 68(6), 5696-5710.   DOI