Browse > Article
http://dx.doi.org/10.15207/JKCS.2020.11.11.183

All goods Inspection Convergence System for the Development of LCD Molybdenum Pin  

Lee, Jeongl-Ick (Dept. of Mechanical Design, INHA Technical College)
Publication Information
Journal of the Korea Convergence Society / v.11, no.11, 2020 , pp. 183-187 More about this Journal
Abstract
The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, In this paper, especially, research on the convergency design for total inspection machine is treated. is treated.
Keywords
Molybdenum pin; LCD; Back Light Unit; Inspection; CCFL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. B. Moon, U. K. Jung, H. S. Lee, J. Y. Lee, H. Y. Lee, B. M. Kim & H. S. Yang. (2010). CCFL Defects Detection Algorithm with Shooting Environment. Proceedings of the Korea Information Processing Society Conference, 365-368.
2 C. B. Moon, Y. H. Ahn, H. Y. Lee, B. M. Kim & D. W. Oh. (2010). Implementation of Automatic Detection System for CCFL's Detection based on Combined Lighting. Journal of the Korea industry information Systems Research, 69-81.
3 Y. C. Kim. (2006). Modeling of Piezoelectric Transformer and CCFL by PSPICE Circuit Analysis. Journal of the Korea Academy-industrial cooperation Society, 7(3), 350-357.
4 J. I. Lee, E. S. Lee & B. I. Yoo. (2008). CCFL Electrode Molybdenum Pin. Proceedings of Korean Society of Mechanical Technology, 5-9.
5 J. I. Lee. (2009). The Development of CCFL Electrode Nickle Cup for High Brightness and High Life. Proceedings of Korean Society of Mechanical Technology, 43-47.
6 T. Zaitsu, I. Inoue, O. Ohnishi & A. Iwamoto. (1992). 2MHz Power Converter with Piezoelectric Ceramic Transformer. IEEE INTELEC'92 Proc., 430-437.
7 L. H. Hwang, J. H. Yoo, J. R. Kim, E. S. Jang, C. S. Lee, M. T. Cho & J. S. Kim. (2002). A study on the T5 Fluorescent Lamp Ballast used Contour Vibration Mode Piezoelectric Transformer using a One-Chip Micro- controller, ISAF, 287-290.
8 T. Zaitsu, T. Shigehisa & M. Shoyama. (1996). Piezoelectric Transfomer Converter with PWM Control. IEEE APEC'96 Proc., 279-283.
9 L. H. Hwang, J. H. Yoo, J. R. Kim, E. S. Jang, D. G. Oh, Y. H. Jeong, K. S. Ahn & M. T. Cho. (2004). Fabrication and characteristics of PDA LCD backlight driving circuit using piezoelectric transformer, Sensor and Actuator, 74-78.   DOI
10 L. H. Hwang, J. H. Yoo, J. R. Kim, J. H. Jang, M. T. Cho, I. S. Ahn & H. B. Song. (2005). A study on Driving of 35W(T5) fluorescent lamp by the electronic ballast using piezoelectric transformar, ICCE, psi-60.
11 N. Sun & B. Hesterman. (1997). Pspice Frequency Dynamic Fluorescent Lamp Model. IEEE APEC Conference Record, 641-647.
12 T. Zaitsu, T. Inoue, O. Ohnishi & Y. Sasaki. (1997). 2MHz Power Converter with Piezoelectric Ceramic Transfomer, IEICE Transactions on Electronics, E77-C(2).
13 G. Lee et al. (2013). Flexible and Transparent MoS2 Field-Effect Transistor on Hexagonal Boron Nitride-Graphene Heterostructures, ACS nano, 9, 7931-7936
14 K. F. Mak, C. Lee, J. Hone, J. Shan & T. F. Heinz. (2010). Atomically Thin MoS2: A New Direct-Gap Semiconductor, Phys. Rev. Lett. 105, 136805.   DOI
15 C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone & S. Ryu. (2010). Anomalous Lattice Vibrations of Signle-and Few-Layer MoS2. ACS Nano4, 2695-2700.   DOI