Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.9.041

Development of High-Density Information Storage Media by Employing the Six Sigma Methodology  

Lee, Myung-Bok (Division of Mechanical and Metallic Mold Engineering, Gwangju University)
Publication Information
Journal of the Korea Convergence Society / v.9, no.9, 2018 , pp. 41-46 More about this Journal
Abstract
Six sigma methodology is the management tools not only can cause productivity enhancement through the quality control and cost reduction of products and services but also can be applied to various activities of corporates such as research and development. Development of high-density information storage media and devices is indispensible to accomplish the information convergence era. In this paper, we report the case of applying six sigma methodology and tools to the development project of high-density information storage media. The standard DMAIC process was applied to the project and pursuing goals and tools and results in each stage were explained in detail. By adopting the methodology, we could establish fabrication methods of information storage media of recording density higher than $250Gb/in^2$ with high uniformity and reproducibility. The magnetic property and performance of fabricated media were confirmed through measurement of the magnetic hysteresis curve.
Keywords
Six sigma; Information convergence; Information storage media; Magnetic recording;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Chowdhury. (2002). Design for Six Sigma: The revolutionary process for achieving extraordinary profits, Prentice Hall, ISBN 9780793152247.
2 T. Bertels. (2003). Rath & Strong's Six Sigma Leadership Handbook, John Wiley and Sons, pp. 57-83, ISBN 9780471251248.
3 J. Antony & R. Banuelas. (2002). Key ingredients for the effective implementation of Six Sigma program. Measuring Business Excellence, 6(4), 20-27. DOI: 10.1108/13683040210451679   DOI
4 C. R. Superville & S. Gupta. (2001). Issues in modeling, monitoring and managing quality costs. The TQM Magazine, 13(6), 419-423.   DOI
5 J. d. Mast & J. Lokkerbol. (2012). An analysis of the Six Sigma DMAIC method from the perspective of problem solving. International Journal of Production Economics, 139(2), 604-614. DOI: 10.1016/j.ijpe.2012.05.035   DOI
6 T. Hasenkamp & A. Olme. (2008). Introducing Design for Six Sigma at SKF. International Journal of Six Sigma and Competitive Advantage, 4(2), 172-189. DOI: 10.1504/IJSSCA.2008.020281   DOI
7 R. Ruiz, E. Dobisz & T. R. Albrecht. (2011). Rectangular patterns using block copolymer directed assembly for high bit aspect ratio patterned media. ACS Nano, 5(1), 79-84. DOI: 10.1021/nn101561p   DOI
8 P. Kaushik & D. Khanduja. (2009). Application of Six Sigma DMAIC methodology in thermal power plants: A case study. Total Quality Management & Business Excellence, 20(2), 197-207. DOI: 10.1080/14783360802622995   DOI
9 I. Zana, G. Zangari, & M. Shamsuzzoha. (2005). Enhancing the perpendicular magnetic anisotropy of Co-Pt(P) films by epitaxial electrodeposition onto Cu(111) substrates. Journal of Magnetism and Magnetic Matererials, 292, 266-280. DOI: 10.1016/j.jmmm.2004.11.141   DOI
10 B. D. Terris. (2009). Fabrication challenges for patterned recording media. Journal of Magnetism and Magnetic Materials, 321(6), 512-517. DOI: 10.1016/j.jmmm.2008.05.046   DOI
11 C. A. Ross. (2001). Patterned magnetic recording media. Annual Review of Materials Research, 31, 203-235. DOI: 10.1146/annurev.matsci.31.1.203   DOI
12 T. Ouchi, Y. Arikawa & T. Homma. (2008). Fabrication of CoPt magnetic nanodot arrays by electrodeposition process. Journal of Magnetism and Magetic Materials, 320(22), 3104-3107. DOI: 10.1016/j.jmmm.2008.08.022   DOI
13 D. H. Lee, E. H. Cho, H. S. Kim, B. K. Lee, M. B. Lee, J. S. Sohn, C. H. Lee & S. J. Suh. (2008). Multilayer soft mold for UV imprinting the 50 nm pitch dot array. Journal of Vacuum Science and Technology B, 26(2), 514-517. DOI: 10.1116/1.2839880   DOI
14 R. A. Griffiths, A. Williams, C. Oakland, J. Roberts, A. Vijayaraghavan & T. Thomson. (2013). Directed self-assembly of block copolymers for use in bit patterned media fabrication. Journal of Physics D: Applied Physics, 46(50), 503001. DOI: 10.1088/0022-3727/46/50/503001   DOI
15 G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter & B. D. Terris. (2002). Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold. Applied Physics Letters, 81, 1483-1485. DOI: 10.1063/1.1501763   DOI
16 A. I. Gapin, X. R. Ye, J. F. Aubuchon, L. H. Chen, Y. J. Tang & S. Jin. (2006). CoPt patterned media in anodized aluminum oxide templates. Journal of Applied Physics, 99(8), 08G902. DOI: 10.1063/1.2163289   DOI
17 X. Yang, S. Xiao, W. Hu, J. Hwu, R. Veerdonk, K. Wago, K. Lee & D. Kuo. (2014). Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media. Nanotechnology, 25(39), 395301. DOI: 10.1088/0957-4484/25/39/395301   DOI