Browse > Article
http://dx.doi.org/10.11625/KJOA.2018.26.4.677

Effect of Kluyvera sp. CL-2 on Sugar contents of Watermelon and Soil Chemical Properties  

Hong, Soo-Young (강원도 농업기술원 환경농업연구과)
Choi, Seong-Chul (강원도농업기술원 옥수수연구소)
Seo, Young-Ho (강원도농업기술원 환경농업연구과)
Lim, Su-Jeong (강원도농업기술원 환경농업연구과)
Heo, Su-Jeong (강원도농업기술원 환경농업연구과)
Yoon, Byeong-Sung (강원도농업기술원 환경농업연구과)
Park, Young-Hak (강원도농업기술원 환경농업연구과)
Hong, Dae Ki (강원도농업기술원 환경농업연구과)
Song, Jae-Kyeong (국립농업과학원 농업미생물과)
Publication Information
Korean Journal of Organic Agriculture / v.26, no.4, 2018 , pp. 677-686 More about this Journal
Abstract
This study was carried out to determine the effect of Kluyvera sp. CL-2 (KACC 91283P) on the growth of watermelon (Citrullus vulgaris L.). The study consisted of three treatments, no treatment (NT), twice application of Kluyvera sp. CL-2 before transplanting (KC1), and five times application around transplanting (KC2). We determined the chemical properties of soil before and after the treatments, and compared the growth characteristics of watermelon among treatments. The treatment of Kluyvera sp. CL-2 at $1.0{\times}10^6cfu\;mL^{-1}$ significantly increased available $P_2O_5$. The organic matter showed to increase for all treatments, while soil pH, exchangeable Ca and Mg tended to decrease for all treatments. The leaf width was increased by 11.6% for KC1 and 26.2% for KC2 compared to NT. But there were no significant differences in yield, leaf length, fruit weight, fruit length, fruit width, and pericarp thickness among treatments. The contents of free sugars such as fructose and glucose were increased by microbial treatments but sucrose was not different from NT. The content of glucose in watermelon was increased by 13.8% in KC1 and 12.8% in KC2 compared to NT. The content of fructose increased by 14.6% in KC1 and by 39.8% in KC2 compared to NT. The results from the study imply that Kluyvera sp. CL-2 can be used to increase sugar content in watermelon.
Keywords
Kluyvera sp. CL-2; PGPR (plant growth promoting rhizobacterium); watermelon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Byun, J. Y., S. J. Yun, I. J. Lee, and D. S. Kim. 2014. Plant Physiology. Hyang Mun Sa. Korea. pp. 80-81.
2 Chung, J. B., J. E. Yang, K. Y. Kim, K. H. Kim, J. G. Kim, T. M. Sa, J. S. Suh, B. K. Sohn, K. C. Eom, S. E. Lee, K. Y. Jung, D. Y. Chung, Y. T. Chung, and H. N. Hyun. 2006. Soil science. Hyang Mun Sa. Korea. p. 255.
3 Heo, J. Y., D. H. Kim, Y. J. Choi, S. D. Lee, S. W. Seuk, J. K. Song, J. S. Kwon, and M. K. Kim. 2016. Effect of Bacillus subtilis S37-2 on microorganisms in Soil and Growth of Lettuce (Lactuca sativa). Korean J. Soil Sci. Fert. 49(5): 621-626.   DOI
4 Jung, B. K., Y. H. Kim, and S. D. Kim. 2013. Root Colonization and Quorum-Sensing of the Antagonistic Bacterium Pseudomonas fluorescens 2112 involved in the Red-pepper Rhizosphere. Korean J. Microbiol. Biotechnol. 41(1): 105-111.   DOI
5 Kim, H. B., S. L. Kim, J. Y. Moon, and S. J. Chang. 2003. Quantification and Varietal Variation of Free Sugars in Mulberry Fruits. Korean J. Seric. Sci. 45(2): 80-84.
6 Kim, J. Y., S. H. Lee, S. J. Hwang, G. H. Kim, and J. B. Eun. 2013. Physicochemical Characteristics and Functional Components of Mudeungsan Watermelon and the other Cultivars from Korean J. Food Sci. Technol. 45(3): 345-349.
7 Kim, S. J. and H. Y. Park. 2007. Changes in Sugar Composition and Related Enzyme Activities during Fruit Development in Peach Cultivars. Kor. J. Hort. Sci. Technol. 25(3): 204-111.
8 Kim, Y. K., S. J. Hong, C. K. Shim, M. J. Kim, M. H. Lee, J. H. Park, E. J. Han, E. J. Choi, S. I. Bae, and H. J. Jee. 2014. Effect of Korean Fermented Food Extracts and Bacteria Isolated from the Extracts for the Control of Rice Seed-borne Fungal Diseases. Korean J. Pestic. Sci. 18(4): 383-395.   DOI
9 Kim, Y. K., S. B. Yang, W. G. Chang, and M. K. Lee. 2015. Water Quality Purification Characteristics with a Novel Effective Microorganisms Developing Equipment. J. Korean Soc. Environ. Technol. 16(1): 1-8.
10 Kim, Y. K., S. J. Hong, C. K. Shim, M. J. Kim, E. J. Choi, M. H. Lee, J. H. Park, E. J. Han, N. H. An, and H. J. Jee. 2012. Functional Analysis of Bacillus subtilis Isolates and Biological Control of Red Pepper Powdery Mildew Using Bacillus subtilis R2-1. Res. Plant Dis. 18(3): 201-209.   DOI
11 Kwon, J. S., H. Y. Weon, J. S. Suh, W. G. Kim, K. Y. Jang, and H. J. Noh. 2007a. Plant Growth Promoting Effect and Antifungal Activity of Bacillus subtilis S37-2. Korean J. Soil Sci. Fert. 40(6): 447-453.
12 Kwon, J. S., J. S. Suh, H. Y. Weon, W. G. Kim, and H. J. Noh. 2007b. Phosphate Solubilizing Activity of Pseudomonas sp. CL-1 and Kluyvera sp. CL-2. Korean J. Soil Sci. Fert. 40(6): 442-446.
13 Woo, S. M. and S. D. Kim. 2008. Structural Identification of $Sideropore_{AH18}$ from Bacillus subtilis AH18, a Biocontrol agent of Phytophthora Blight Disease in Red-pepper. Kor. J. Microbiol. Biotechnol. 36(4): 326-335.
14 Lee, G. W., K. J. Lee, and J. C. Chae. 2014. Pseudomonas sp. G19 alleviates salt stress and promotes growth of Chinese cabbage. Korean J. Microbiol. 50(4): 368-371.   DOI
15 Lincoln, T. and E. Zeiger. 2005. Plant Physiology. Life Science Publishing Co. pp. 157-163.
16 Michael L. Richmond, P. Markakis, Sebastiao C. C. Brandao, Charles M. Stine, and J. Ian Gray. 1981. Analysis of Simple sugars and Sorbitol in Fruit by High Performance Liquid Chromatography. J. Agr. Food Chem. 29(1): 4-7.   DOI
17 Moon, H. Y. and J. C. Koo. 2013. Isolation and Characterization of Plant Growth Promoting Bacteria. Jour. Science Education. Chonbuk National University. 38(2): 117-127.
18 Sohn, J. Y., S. C. Ban, J. S. Shin, and S. H. Hong. 1996. Distribution of Free Sugars in the Various Portions of Watermelon(Citrullus vulgaris L.) and Muskmelon(Cucumis melo var. reticulatus Naud.). 1996. Agric. Chem. Biotechnol. 39(3): 200-205.
19 Yang, J. E., J. B. Chung, J. E. Kim, and K. S. Lee. 2008. Ag-Environmental Science. C.I.R. Korea. pp. 294-295.