Browse > Article
http://dx.doi.org/10.11625/KJOA.2015.23.4.847

Quantitative Analysis of Bacillus amyloliquefaciens GR4-5 in Soil  

Kim, Dayeon (농촌진흥청 국립농업과학원)
Kim, Byung-Yong (천랩)
Ahn, Jae-Hyung (농촌진흥청 국립농업과학원)
Weon, Hang-Yeon (농촌진흥청 국립농업과학원)
Kim, Sung-Il (강원도농업기술원 인삼약초연구소)
Kim, Wan-Gyu (농촌진흥청 국립농업과학원)
Song, Jaekyeong (농촌진흥청 국립농업과학원)
Publication Information
Korean Journal of Organic Agriculture / v.23, no.4, 2015 , pp. 847-858 More about this Journal
Abstract
Bacillus amyloliquefaciens GR4-5 was isolated from the rhizosphere soil of Korean ginseng and displayed broad-spectrum suppression of ginseng root rot pathogens. The survivability of B. amyloliquefaciens GR4-5 in soil was investigated under three different conditions; indoor, outdoor - of which soil was put in 14 mL tube after treatment - and field environments. Soil samples were collected over a four-week period from three experimental designs, and assessed for 16S rRNA gene copy number by quantitative polymerase chain reaction (qPCR). In outdoor condition, the 16S rRNA gene copy number of Bacillus spp. was 8.35 log copies g $soil^{-1}$ immediately after the GR4-5 treatment. Two weeks later, the 16S rRNA gene copy number of Bacillus spp. (6.70 log copies g $soil^{-1}$) was similar to that of the control (6.38 log copies g $soil^{-1}$). In indoor condition, the 16S rRNA gene copy number of Bacillus spp. maintained in a certain level for a longer period than those in outdoor and field. The 16S rRNA gene copy number of Bacillus spp. in field experiment was reduced faster than that of outdoor condition. Our results show that B. amyloliquefaciens GR4-5 can survive in bulk soil for 1 week, indicating its potential use as a biocontrol agent following 7 day application intervals. This study presents that outdoor microcosm system design could be a useful method to assess easily the survivability of beneficial microorganisms.
Keywords
bacillus amyloliquefaciens; microcosm; quantitative PCR; survivability;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ahn, Y. J., H. J. Kim, S. H. Ohh, and S. Y. Choi. 1982. Effect of soil fumigation on growth, root rot and red discoloration of Panax ginseng in replanted soils. J. Ginseng Res. 6: 46-55.
2 Bashan, Y., M. E. Puente, M. N. Rodriguez-Mendoza, G. Toledo, G. Holguin, R. Ferrera-Cerrato, and S. Pedrin. 1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Appl. Environ. Microbiol. 61: 1938-1945.
3 Bennett, A. J., C. Leifert, and J. M. Whipps. 2003. Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biol. Biochem. 35: 1565-1573.   DOI
4 Binnerup, S. J., D. F. Jensen, H. Thordal-Christensen, and J. Sorensen. 1993. Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol. Ecol. 12: 97-105.   DOI
5 Cao, P., S. S. Shen, C. Y. Wen, S. Song, and C. S. Park. 2009. The effect of the colonization of Serratia plymuthica A21-4 in rhizosphere soil and root of pepper in different soil environment. Res. Plant Dis. 15: 101-105.   DOI
6 Chung, H. S. 1975. Studies on Cylindrocarpon destructans (Zins.) Scholten causing root rot of ginseng. Rep. Tottori. Mycol. Inst. 12: 127-138.
7 Danhorn, T. and C. Fuqua. 2007. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61: 401-422.   DOI
8 Doran, J. W. and M. R. Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15: 3-11.   DOI
9 Dutta, S. and A. R. Podile. 2010. Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit. Rev. Microbiol. 36: 232-244.   DOI
10 Geels, F. and B. Schippers. 1983. Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. J. Phytopathol. 108: 193-206.   DOI
11 Haggag, W. and S. Timmusk. 2008. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J. Appl. Microbiol. 104: 961-969.   DOI
12 Ho, W. and W. Ko. 1985. Soil microbiostasis: effects of environmental and edaphic factors. Soil Biol. Biochem. 17: 167-170.   DOI
13 Hwang, J. M., K. C. Park, and S. J. Kim. 2010. Contents of soil microbial phospholipid fatty acids as affected by continuous cropping of pepper under upland. Korean J. Soil Sci. Fert. 43: 1012-1017.
14 Jesser, K. J., H. Fullerton, K. W. Hager, and C. L. Moyer. 2015. Quantitative PCR analysis of functional genes in iron-rich microbial mats at an active hydrothermal vent system (Lo'ihi Seamount, Hawai'i). Appl. Environ. Microbiol. 81: 2976-2984.   DOI
15 Jun, H. S., W. C. Park, and J. S. Jung. 2002. Effects of soil addition and subsoil plowing on the change of soil chemical properties and the reduction of root-knot nematode in continuous cropping field of oriental melon (Cucumis melo L.). Korean J. Environ. Agr. 21: 1-6.   DOI
16 Kim, B. Y., J. H. Ahn, H. Y. Weon, J. Song, S. I. Kim, and W. G. Kim. 2012. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16: 357-363.   DOI
17 Liu, C., J. Sheng, L. Chen, Y. Zheng, D. Y. W. Lee, Y. Yang, M. Xu and L. Shen. 2015. Biocontrol activity of Bacillus subtilis isolated from Agaricus bisporus mushroom compost against pathogenic fungi. J. Agric. Food Chem. 63: 6009-6018.   DOI
18 Kim, J. S., S. W. Kwon, S. J. Lee, B. G. Jung, J. Song, S. J. Go, and J. C. Ryu. 1999. Analysis of microbial community structure in soil and crop root system: I. Analysis of bacterial community structure in the soil and root system of red pepper and tomato. Korean J. Soil Sci. Fert. 32: 319-325.
19 Krzyzanowska, D., M. Obuchowski, M. Bikowski, M. Rychlowski, and S. Jafra. 2012. Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors-Basel. 12: 17608-17619.   DOI
20 Lee, Y. H. and S. T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44: 492-497.   DOI
21 Liu, Y. P., N. Zhang, M. H. Qiu, H. C. Feng, J. M. Vivanco, Q. R. Shen, and R. F. Zhang. 2014. Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol. Lett. 353: 49-56.   DOI
22 Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods. 57: 399-407.   DOI
23 Lugtenberg, B. J. J., L. Dekkers, and G. V. Bloemberg. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39: 461-490.   DOI
24 Park, J. W., S. Jahaggirdar, Y. E. Cho, K. S. Park, S. H. Lee, and K. S. Park. 2010. Evaluation of Bacillus subtilis native strains for plant growth promotion and induced systemic resistance in tomato and red-pepper. Korean J. Pestic. Sci. 14: 407-414
25 Mahaffee, W. F. and P. A. Backman. 1993. Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis Gb03. Phytopathology. 83: 1120-1125.   DOI
26 Ohh, S. H. and C. S. Park. 1980. Studies on Phytophthora disease of Panax ginseng CA Meyer; its casual agent and possible control measures. J. Ginseng Res. 4: 186-193.
27 Ongena, M. and P. Jacques. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.   DOI
28 Park, J. W. and D. E. Crowley. 2005. Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE. Biotechniques. 38: 579-586.   DOI
29 Raupach, G. S. and J. W. Kloepper. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology. 88: 1158-1164.   DOI
30 Seong, K. Y., M. Hofte, J. Boelens, and W. Verstraete. 1991. Growth, survival, and root colonization of plant growth beneficial Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2 at different temperatures. Soil Biol. Biochem. 23: 423-428.   DOI
31 Shin, J. H., B. D. Yun, H. J. Kim, S. J. Kim, and D. Y. Chung. 2012. Soil environment and soil-borne plant pathogen causing root rot disease of ginseng. Korean J. Soil Sci. Fert. 45: 370-376.   DOI
32 Vandenhove, H., R. Merckx, H. Wilmots and K. Vlassak. 1991. Survival of Pseudomonas fluorescens inocula of different physiological stages in soil. Soil Biol. Biochem. 23: 1133-1142.   DOI
33 Simons, M., H. P. Permentier, L. A. de Weger, C. A. Wijffelman and B. J. Lugtenberg. 1997. Amino acid synthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. Plant Microbe Interact. 10: 102-106.   DOI
34 Szczech, M. and M. Shoda. 2006. The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J. Phytopathol. 154: 370-377.   DOI
35 Van Veen, J. A., L. S. Van Overbeek and J. D. Van Elsas. 1997. Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61: 121-135.
36 Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407.   DOI
37 Xu, Z. H., J. H. Shao, B. Li, X. Yan, Q. R. Shen and R. F. Zhang. 2013. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 79: 808-815.   DOI
38 Yamada, M. 2001. Methods of control of injury associated with continuous vegetable cropping in Japan: crop rotation and several cultural practices. Jpn. Agric. Res. Q. 35: 39-45.   DOI
39 Yu, Z., Y. Zhang, W. Luo and Y. Wang. 2014. Root colonization and effect of biocontrol fungus Paecilomyces lilacinus on composition of ammonia-oxidizing bacteria, ammoniaoxidizing archaea and fungal populations of tomato rhizosphere. Biol. Fertil. Soils. 51: 343-351.
40 Zhu, Y. Z., D. S. Park, M. R. Cho, J. H. Hur and C. K. Lim. 2005. Suppression of Meloidogyne arenaria by different treatments of Pasteuria penetrans. Korean J. Pestic. Sci. 9: 437-441.