Browse > Article
http://dx.doi.org/10.5855/ENERGY.2014.23.4.141

Structure direct agent-assisted hydrothermal synthesis and small gases adsorption behavior of pure RHO zeolite  

Kim, Beom-Ju (Graduate School of Energy Science and Technology, Chungnam National University)
Sharma, Pankaj (Graduate School of Energy Science and Technology, Chungnam National University)
Han, Moon-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Churl-Hee (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Abstract
In the present study, pure RHO zeolite was hydrothermally synthesized by using 18-crown-6 ether as a structure directing agent(SDA), and the small gases adsorption was investigated. Synthesized RHO zeolite was a cube shape particle of which average edge length was around $1.2{\mu}m$ and composed of primary crystallites having a diameter of around 100 to 200 nm. RHO zeolite structure was stable under 3h calcination at $600^{\circ}C$. Water adsorption data announced that RHO zeolite has a specific surface area of 483.32 m2/g and its micropore diameter was about 4 A. Gas adsorption was studied in the pressure range of 50 to 500 kPa for $CO_2$, $N_2$, $O_2$ and $H_2$. It was evident that RHO zeolite showed a strong $CO_2$ adsorption behavior. Especially, RHO zeolite showed a transient $CO_2$ adsorption behavior. The 3h $CO_2$ up-take at 50 kPa and 500 kPa was 1.283 and 3.357 mmol/g, respectively. The $CO_2/H_2$ selectivity was around 16 at 500 kPa. Compared with gas adsorption data for some representative microporous adsorbents, it was certain that RHO zeolite is a beneficial adsorbent for $CO_2/H_2$ separation.
Keywords
RHO zeolite; hydrothermal synthesis; gas adsorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 ROBSON, H. E.; SHOEMAKER, D. P.; OGILVIE, R. A.; MANOR, P. C. Synthesis and crystal structure of zeolite rho-a new zeolite related to linde type A, 1973
2 Parise, J. B.; Prince, E. The structure of cesium-exchanged zeolite-RhO at 293K and 493K determined from high resolution neutron powder data, Materials Research Bulletin 1983, 18 (7), 841-852   DOI
3 Abrams, L.; Corbin, D. R.; Keane Jr, M. Synthesis of dimethylamine by zeolite Rho: A rational basis for selectivity, Journal of Catalysis 1990, 126 (2), 610-618   DOI
4 Corbin, D. R.; Schwarz, S.; Sonnichsen, G. C. Methylamines synthesis: A review, Catalysis today 1997, 37 (2), 71-102   DOI
5 Callanan, L. H.; vanSteen, E.; O'Connor, C. T. Improved selectivity to lower substituted methylamines using hydrothermally treated zeolite Rho, Catalysis today 1999, 49 (1), 229-235   DOI
6 Callanan, L .H.; O'Connor, C. T.; van Steen, E. The effect of the adsorption properties of steamed zeolite rho on its methanol amination activity, Microporous and Mesoporous Materials 2000, 35, 163-172
7 Jeon, H.-Y.; Shin, C.-H.; Jung, H.J.; Hong, S. B. Catalytic evaluation of small-pore molecular sieves with different framework topologies for the synthesis of methylamines, Applied Catalysis A: General 2006, 305 (1), 70-78   DOI
8 Krishnan, V. V.; Suib, S. L.; Corbin, D. R.; Schwarz, S.; Jones, G. E. Encapsulation studies of hydrogen on cadmium exchanged zeolite rho at atmospheric pressure, Catalysis today 1996, 31 (3), 199-205   DOI
9 Langmi, H.; Walton, A.; Al-Mamouri, M.; Johnson, S.; Book, D.; Speight, J.; Edwards, P.; Gameson, I.; Anderson, P.; Harris, I. Hydrogen adsorption in zeolites A, X, Y and RHO, Journal of alloys and compounds 2003, 356, 710-715
10 Merz, C.; Fetting, F. Synthese des Zeoliths RHO, Chemie Ingenieur Technik 1994, 66 (5), 730-732   DOI   ScienceOn
11 Chatelain, T.; Patarin, J.; Fousson, E.; Soulard, M.; Guth, J.; Schulz, P. Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template, Microporous Materials 1995, 4 (2), 231-238   DOI   ScienceOn
12 Araki, S.; Kiyohara, Y.; Tanaka, S.; Miyake, Y. Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template, Journal of colloid and interface science 2012, 376 (1), 28-33   DOI
13 Masih, D.; Imai, H.; Yokoi, T.; Kondo, J. N.; Tatsumi, T. Methanol conversion to lower olefins over RHO type zeolite, Catalysis Communications 2013, 37, 1-4   DOI
14 Araki, S.; Kiyohara, Y.; Tanaka, S.; Miyake, Y. Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether, Journal of colloid and interface science 2012, 388 (1), 185-190   DOI
15 Palomino, M.; Corma, A.; Jorda, J. L.; Rey, F.; Valencia, S. Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification, Chemical Communications 2012, 48 (2), 215-217   DOI
16 Lozinska, M. M.; Mowat, J. P.; Wright, P. A.; Thompson, S. P.; Jorda, J. L.; Palomino, M.; Valencia, S.; Rey, F. Cation Gating and Relocation during the Highly Selective "Trapdoor" Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho, Chemistry of Materials 2014, 26 (6), 2052-2061   DOI
17 Lozinska, M. M.; Mangano, E.; Mowat, J. P.; Shepherd, A. M.; Howe, R. F.; Thompson, S. P.; Parker, J. E.; Brandani, S.; Wright, P. A. Understanding Carbon Dioxide Adsorption on Univalent Cation Forms of the Flexible Zeolite Rho at Conditions Relevant to Carbon Capture from Flue Gases, Journal of the American Chemical Society 2012, 134 (42), 17628-17642   DOI
18 Schell, J.; Casas, N.; Blom, R.; Spjelkavik, A. I.; Andersen, A.; Cavka, J. H.; Mazzotti, M. MCM-41, MOF and UiO-67/MCM-41 adsorbents for pre-combustion CO2 capture by PSA: adsorption equilibria, Adsorption 2012, 18 (3-4), 213-227   DOI
19 Belmabkhout, Y.; Pirngruber, G.; Jolimaitre, E.; Methivier, A. A complete experimental approach for synthesis gas separation studies using static gravimetric and column breakthrough experiments, Adsorption 2007, 13 (3-4), 341-349   DOI   ScienceOn
20 Sharma, P.; Yeo, J.-g.; Han, M. H.; Cho, C. H. Knobby surfaced, mesoporous, single-phase GIS-NaP1 zeolite microsphere synthesis and characterization for H 2 gas adsorption, Journal of Materials Chemistry A 2013, 1 (7), 2602-2612   DOI
21 Rother, J.; Fieback, T. Multicomponent adsorption measurements on activated carbon, zeolite molecular sieve and metal-organic framework, Adsorption 2013, 19 (5), 1065-1074   DOI
22 Fujiwara, M.; Fujio, Y.; Sakurai, H.; Senoh, H.; Kiyobayashi, T. Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet, Chemical Engineering and Processing: Process Intensification 2014, 79, 1-6   DOI
23 Makarova, M. A.; Zholobenko, V. L.; Al-Ghefaili, K. M.; Thompson, N. E.; Dewing, J.; Dwyer, J. Bronsted acid sites in zeolites. FTIR study of molecular hydrogen as a probe for acidity testing, Journal of the Chemical Society, Faraday Transactions 1994, 90 (7), 1047-1054   DOI   ScienceOn
24 Rowsell, J. L.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks, Journal of the American Chemical Society 2004, 126 (18), 5666-5667   DOI   ScienceOn
25 Cai, J.; Qi, J.; Yang, C.; Zhao, X. Poly (vinylidene chloride)-Based Carbon with Ultrahigh Microporosity and Outstanding Performance for CH4 and H2 Storage and CO2 Capture, ACS applied materials & interfaces 2014, 6 (5), 3703-3711   DOI