Browse > Article
http://dx.doi.org/10.22424/jmsb.2019.37.1.49

Improved Cell Viability and Anti-Candida Activity of Probiotic Lactobacillus salivarius MG242 by Heat Adaptation  

Kang, Chang-Ho (MEDIOGEN, Co., Ltd)
Kim, YongGyeong (MEDIOGEN, Co., Ltd)
Shin, YuJin (Dept. of Biological Engineering, Inha University)
Paek, Nam-Soo (MEDIOGEN, Co., Ltd)
So, Jae-Seong (Dept. of Biological Engineering, Inha University)
Publication Information
Journal of Dairy Science and Biotechnology / v.37, no.1, 2019 , pp. 49-56 More about this Journal
Abstract
Vulvovaginal candidiasis is a major urogenital infection in women. Lactobacilli are important in maintaining vaginal health. In the present study, the effect of heat adaptation at $47{\sim}52^{\circ}C$ prior to heat stress at $60^{\circ}C$ in improving the viability of Lactobacillus salivarius MG242 was examined. L. salivarius MG242 has antifungal effects against Candida albicans. Heat-adapted cells had a higher survival rate than non-adapted cells during the subsequent heat stress. When chloramphenicol was added during the adaptation process, heat tolerance was abolished, suggesting the involvement of de novo protein synthesis with the heat adaptation of L. salivarius MG242 strain. Exopolysaccharide quantification and scanning election microscopy did not reveal any appreciable changes during heat adaptation. The antifungal activity of L. salivarius MG242 against C. albicans was maintained during the heat adaptation. These results suggest that heat adaptation can be applied for the development of probiotic products using L. salivarius MG242 to improve its stress tolerance during processing.
Keywords
vaginal; Lactobacillus salivarius MG242; Candida albicans; probiotic; heat adaptation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hansen, M. C., Nielsen, A. K., Molin, S., Hammer, K., Kilstrup, M., Palmer, R. J., Udsen, C. and White, D. C. 2001. Changes in rRNA levels during stress invalidates results from mRNA blotting, fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J. Bacteriol. 183:4747-4751.   DOI
2 Hartke, A., Bouché, S., Giard, J. C., Benachour, A., Boutibonnes, P. and Auffray, Y. 1996. The lactic acid stress response of Lactococcus lactis subsp. lactis. Curr. Microbiol. 33:194-199.   DOI
3 Jung, Y. J., Kang, C. H., Shin, Y. J. and So, J. S. 2017. Characterization and antifungal activity against Candida albicans of vaginal Lactobacillus spp. isolated from Korean women. Korean J. Biotechnol. Bioeng. 32:146-152.
4 Kang, C. H., Han, S. H., Kim, Y. G. and Paek, N. S. 2018. In vitro probiotic properties of Lactobacillus salivarius MG242 isolated from human vagina. Probiotics & Antimicro. Prot. 10:343.   DOI
5 Kang, C. H., Jeon, H. E., Shin, Y. J., Kwon, Y. J. and So, J. S. 2015. Heat adaptation improves viability of Lactococcus lactis subsp. lactis HE-1 after heat stress. Food Sci. Biotechnol. 24:1823-1827.   DOI
6 Kwak, D. Y., Kang, C. H., Jeon, H. E. and So, J. S. 2014. Improved cell viability of Lactobacillus crispatus KLB46 by stress adaptation. Korean J. Biotechnol. Bioeng. 29:81-86.
7 Liu, H. and Fang, H. H. P. 2002. Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 95:249-256.   DOI
8 Sorqvist, S. 2003. Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet. Scand. 44:1-19.   DOI
9 Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 16:41-46.   DOI
10 Yanez, R., Marques, S., Girio, M. F. and Roseiro, J. C. 2008. The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures. Process Biochem. 43:356-361.   DOI
11 Yoo, J. E., Lim, H. J. and Yoo, D. Y. 2010. A clinical study on 2 cases of recurrent Vulvovaginal candidiasis. Korean J. Obstet. Gynecol. 23:205-212.
12 Alvarez-Ordonez, A., Fernandez, A., Lopez, M., Arenas, R. and Bernardo, A. 2008. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123:212-219.   DOI
13 Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., de Melo Franco, B. D. G., Converti, A. and de Souza Oliveira, R. P. 2013. Novel biotechnological applications of bacteriocins, a review. Food Control 32:134‒142.   DOI
14 Chapman, C., Gibson, G., Todd, S. and Rowland, I. 2013. Comparative in vitro inhibition of urinary tract pathogens by single- and multi- strain probiotics. Eur. J. Nutr. 52:1669-1677.   DOI
15 De Gregorio, P., Tomas, M., Santos, V. and Nader-Macias, M. 2012. Beneficial lactobacilli, effects on the vaginal tract in a murine experimental model. Antonie van Leeuwenhoek J. Microbiol. 102:569-580.   DOI
16 Ferrer, J. 2000. Vaginal candidosis, epidemiological and etiological factors. Int. J. Gynecol. Obstet. 71:21-27.   DOI
17 Forde, A. and Fitzgerald, G. F. 1999. Analysis of exopolysaccharide (EPS) production mediated by the bacteriophage adsorption blocking plasmid, pCI658, isolated from Lactococcus lactis ssp. cremoris HO2. Int. Dairy J. 9:465-472.   DOI
18 Han, Y. M. 2003. A role of neutrophils in anti-candida monoclonal antibody protection against vaginal infection due to Candida albicans. Yakhak Hoeji 47:190-194.
19 Looijesteijn, P. J., Trapet, L., de Vries, E., Abee, T. and Hugenholtz, J. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64:71-80.   DOI
20 MacPhee, R., Miller, W., Gloor, G., McCormick, J., Hammond, J., Burton, J. and Reid, G. 2013. Influence of the vaginal microbiota on toxic shock syndrome Toxin 1 production by Staphylococcus aureus. Appl. Environ. Microbiol. 79:1835-1842.   DOI
21 Mastromarino, P., Brigidi, P., Macchia, S., Maggi, L., Pirovano, F., Trinchieri, V., Conte, U. and Matteuzzi, D. 2002. Characterization and selection of vaginal Lactobacillus strains for the preparation of vaginal tablets. J. Appl. Microbiol. 93:884-893.   DOI
22 Paz, R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., Zaritzky, N. and Reinheimer, J. 2012. Effect of heat-treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res. Int. 48:748‒754.   DOI
23 Reid, G. 2001. Probiotic agents to protect the urogenital tract against infection. Am. J. Clin. Nutr. 73:437-443.   DOI
24 Scheie, P. and Ehrenspeck, S. 1973. Large surface blebs on Escherichia coli heated to inactivating temperatures. J. Bacteriol. 114:814-818.   DOI
25 Sharareh, S. B., Shengqian, W., Stefan, T., Maria, H., Iris, A., Frank, M. U., Michael, W. and Helmut, V. 2013. Impact of heat treatment and spray drying on cellular properties and culturability of Bifidobacterium bifidum BB-12. Food Res. Int. 54:93-101.   DOI
26 Somero, G. N. 1995. Proteins and temperature. Annu. Rev. Physiol. 57:43-68.   DOI