Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.5.3.14

Bio-monitoring System for Early Detection of Toxic Dinoflagellate Alexandrium pacificum Using the Shell Valve Movements of Bivalves  

Jeong, Soo Yong (Major of Oceanography, Division of Earth and Environmental System Sciences, Pukyong National University)
Kim, Dae Hyun (Marine System Institute, OCEANTECH Co., Ltd)
Oh, Seok Jin (Major of Oceanography, Division of Earth and Environmental System Sciences, Pukyong National University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.5_3, 2022 , pp. 979-989 More about this Journal
Abstract
We examined changes in the shell valve movements (SVMs) of Mytilus edulis and Crassostrea gigas using a Hall element sensor to investigate the early detection of the toxic dinoflagellate Alexandrium pacificum. No increase or decrease was observed in SVMs caused by the non-toxic algae Isochrysis galbana in both M. edulis and C. gigas. However, when M. edulis and C. gigas were exposed to A. pacificum, which causes paralytic shellfish poisoning, the average SVMs for 12 hours before and after exposure increased from 1.25 times/hr to 2.13 times/hr and 2.23 times/hr to 8.91 times/hr, respectively. After exposure to A. pacificum, the SVMs of M. edulis increased rapidly within 1 hour and then decreased gradually. However, C. gigas showed high SVMs until 4 hours after exposure. SVMs of C. gigas appeared to be more sensitive to toxic dinoflagellate than those of M. edulis. Therefore, these results are expected to be used as basic data for the establishment of a biological monitoring system for early detection of the toxic dinoflagellate A. pacificum.
Keywords
Alexandrium pacificum; Blue mussel (Mytilus edulis); Pacific oyster (Crassostrea gigas); Shell valve movements; Bio-monitoring system;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kacem, I., G. Gimenez Papiol, P. de la Iglesia, J. Diogene, B. Hajjem, and N. Bouaicha, 2015. Comparative toxicity and paralytic shellfish poisoning toxin profiles in the mussel Mytilus galloprovincialis and the oyster Crassostrea gigas collected from a Mediterranean lagoon in Tunisia: a food safety concern, International Journal of Food Properties, 18(5): 1075-1085. https://doi.org/10.1080/10942912.2014.913179   DOI
2 Kim, K.-Y., M. Yoshida, Y. Fukuyo, and C.-H. Kim, 2002. Morphological observation of Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech and one related morphotype (Dinophyceae) in Korea, Algae, 17(1): 11-19. https://doi.org/10.4490/ALGAE.2002.17.1.011   DOI
3 KOSIS (KOrean Statistical Information Service), 2020. Fishery Production Trend Survey, https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01&outLink=Y&entrType=, Accessed on Oct. 7, 2022.
4 Yoon, Y.H., 2010. Red Tides - An Uprising from the Sea-, Jipmoondang, Seoul, Republic of Korea.
5 Chang, D.S., I.S. Shin, J.H. Pyeun, and Y.H. Park, 1987. A study on paralytic shellfish poison of sea mussel, Mytilus edulis-food poisoning accident in Gamchun Bay, Pusan, Korea, 1986, Korean Journal of Fisheries and Aquatic Sciences, 20(4): 293-299 (in Korean with English abstract).
6 Kramer, K.J. and J. Botterweg, 1991. Aquatic biological early warning systems: an overview, In: Jeggrey, D.W., Madden, B. (eds), Bioindicators and Environmental Management, Academic Press, Dublin, Ireland, pp. 95-126.
7 Kramer, K.J., H.A. Jenner, and D. de Zwart, 1989. The valve movement response of mussels: a tool in biological monitoring, Hydrobiologia, 188(1): 433-443. https://doi.org/10.1007/bf00027811   DOI
8 Langton, R.W., 1977. Digestive rhythms in the mussel Mytilus edulis, Marine Biology, 41(1): 53-58. https://doi.org/10.1007/bf00390581   DOI
9 Prakashi, A., J.C. Medcof, and A.D. Tennant, 1971. Paralytic shellfish poisoning in eastern Canada, In: Stevenson, J.C., Billingsley, L.W., Wigmore, R.H. (eds), Fisheries Research Board of Canada, Ottawa, Canada, pp. 1-87.
10 Rajagopal, S., G. Van Der Velde, and H.A. Jenner, 1997. Shell valve movement response of dark false mussel, Mytilopsis leucophaeta, to chlorination, Water Research, 31(12): 3187-3190. https://doi.org/10.1016/S0043-1354(97)00163-2   DOI
11 NIFS (National Institute of Fisheries Science), 2022. Paralytic Shellfish Poisoning Breaking News, https://m.nifs.go.kr/bbs?id=shellfish, Accessed on Oct. 7, 2022.
12 Higgins, P.J., 1980. Effects of food availability on the valve movements and feeding behavior of juvenile Crassostrea virginica (Gmelin). I. Valve movements and periodic activity, Journal of Experimental Marine Biology and Ecology, 45(2): 229-244. https://doi.org/10.1016/0022-0981(80)90060-X   DOI
13 Jeng, M.-S., W.-L. Jeng, T.-C. Hung, C.-Y. Yeh, R.-J. Tseng, P.-J. Meng, and B.-C. Han, 2000. Mussel watch: a review of Cu and other metals in various marine organisms in Taiwan, 1991-98, Environmental Pollution, 110(2): 207-215. https://doi.org/10.1016/S0269-7491(99)00304-8   DOI
14 Lee, J.-S., I.-S. Shin, Y.-M. Kim, and D.-S. Chang, 1997. Paralytic shellfish toxins in the mussel, Mytilus edulis, caused the shellfish poisoning accident at Geoje, Korea, in 1996, Korean Journal of Fisheries and Aquatic Sciences, 30(1): 158-160 (in Korean with English abstract).
15 MOF (Ministry of Oceans and Fisheries), 2021. Production by Major Varieties and Years of Shallow Sea Aquaculture, https://www.mof.go.kr/statPortal/cate/statView.do, Accessed on Oct. 7, 2022.
16 Moroishi, J., I.J. Kang, K. Nagafuchi, T. Honjo, Y. Shimasaki, and Y. Oshima, 2009. Biological monitoring to detect both water pollution and water quality recovery based on valve movements of freshwater bivalves (Corbicula japonica), Journal of the Faculty of Agriculture, Kyushu University, 54(2): 413-420. https://doi.org/10.5109/16124   DOI
17 Mok, J.-S., K.-C. Song, K.-J. Lee, and J.-H. Kim, 2013. Validation of precolumn HPLC oxidation method for analysis of paralytic shellfish poison, Korean Journal of Fisheries and Aquatic Sciences, 46(2): 147-153 (in Korean with English abstract). https://doi.org/10.5657/KFAS.2013.0147   DOI
18 Mok, J.-S., E.-G. Oh, K.-T. Son, T.-S. Lee, K.-J. Lee, K.-C. Song, and J.-H. Kim, 2012. Accumulation and depuration of paralytic shellfish poison in marine organisms, Korean Journal of Fisheries and Aquatic Sciences, 45(5): 465-471 (in Korean with English abstract). https://doi.org/10.5657/KFAS.2012.0465   DOI
19 Nagai, K., 2006. Research on means of alleviating damage by Heterocapsa circularisquama red tides and reddening adductor disease, causes of the mass mortalities of Japanese pearl oysters (Pinctada fucata martensii), Kyushu University, Fukuoka, Japan.
20 Nagai, K., T. Honjo, J. Go, H. Yamashita, and S.J. Oh, 2006. Detecting the shellfish killer Heterocapsa circularisquama (Dinophyceae) by measuring bivalve valve activity with a Hall element sensor, Aquaculture, 255(1-4): 395-401. https://doi.org/10.1016/j.aquaculture.2005.12.018   DOI
21 Park, M.J., H.J. Lee, T.S. Lee, K.T. Son, H.S. Byun, J.H. Park, and D.S. Jang, 2000. Comparison of paralytic shellfish poison contents and components in the different bivalve species, Journal of Food Hygiene and Safety, 15(4): 293-296 (in Korean with English abstract).
22 Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates, In: Smith, M.L., Chanley, M.H. (eds), Culture of Marine Invertebrate Animals, Plenum Press, New York, NY, USA, pp. 29-60. https://doi.org/10.1007/978-1-4615-8714-9_3   DOI
23 Edebo, L., S. Lange, X.P. Li, S. Allenmark, K. Lindgren, and R. Thompson, 1988. Seasonal, geographic and individual variation of okadaic acid content in cultivated mussels in Sweden, APMIS, 96(7-12): 1036-1042. https://doi.org/10.1111/j.1699-0463.1988.tb00978.x   DOI
24 Fujii, T., 1979. The study for periodic behaviour of bivalves, 1: Periodicity observed in short-necked clam Tapes japonica Deshyes put in natural environment, Bulletin of Tohoku Regional Fisheries Research Laboratory, 40: 37-46.
25 Galimany, E., I. Sunila, H. Hegaret, M. Ramon, and G.H. Wikfors, 2008. Pathology and immune response of the blue mussel (Mytilus edulis L.) after an exposure to the harmful dinoflagellate Prorocentrum minimum, Harmful Algae, 7(5): 630-638. https://doi.org/10.1016/j.hal.2008.01.001   DOI
26 Oh, S.J., J.A. Park, H.K. Kwon, H.S. Yang, and W. Lim, 2012. Ecophysiological studies on the population dynamics of two toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella isolated from the Southern Coast of Korea - I. Effects of temperature and salinity on the growth, Journal of the Korean Society for Marine Environment & Energy, 15(2): 133-141 (in Korean with English abstract). https://doi.org/10.7846/JKOSMEE.2012.15.2.133   DOI
27 Haberkorn, H., D. Tran, J.-C. Massabuau, P. Ciret, V. Savar, and P. Soudant, 2011. Relationship between valve activity, microalgae concentration in the water and toxin accumulation in the digestive gland of the Pacific oyster Crassostrea gigas exposed to Alexandrium minutum, Marine Pollution Bulletin, 62(6): 1191-1197. https://doi.org/10.1016/j.marpolbul.2011.03.034   DOI
28 Ham, K.D. and M.J. Peterson, 1994. Effect of fluctuating low-level chlorine concentrations on valvemovement behavior of the asiatic clam (Corbicula fluminea), Environmental Toxicology and Chemistry, 13(3): 493-498. https://doi.org/10.1002/etc.5620130319   DOI
29 Han, M.-S., J.-K. Jeon, and Y.-O. Kim, 1992. Occurrence of dinoflagellate Alexandrium tamarense, a causative organism of paralytic shellfish poisoning in Chinhae Bay, Korea, Journal of Plankton Research, 14(11): 1581-1592. https://doi.org/10.1093/plankt/14.11.1581   DOI
30 Fujii, T. and S. Toda, 1991. Open and close shellmovement of the mussel, Mytilus edulis L. under natural conditions, Bulletin of National Research Institute of Aquaculture, 20: 33-40.
31 Ramu, K., N. Kajiwara, A. Sudaryanto, T. Isobe, S. Takahashi, A. Subramanian, D. Ueno, G.J. Zheng, P.K.S. Lam, H. Takada, M.P. Zakaria, P.H. Viet, M. Prudente, T.S. Tana, and S. Tanabe, 2007. Asian mussel watch program: contamination status of polybrominated diphenyl ethers and organochlorines in coastal waters of Asian countries, Environmental Science & Technology, 41(13): 4580-4586. https://doi.org/10.1021/es070380p   DOI
32 Rao, K.P., 1954. Tidal rhythmicity of rate of water propulsion in Mytilus, and Its modifiability by transplantation, The Biological Bulletin, 106(3):353-359. https://doi.org/10.2307/1538769   DOI
33 Riisgard, H.U. and P.S. Larsen, 2015. Physiologically regulated valve-closure makes mussels long-term starvation survivors: test of hypothesis, Journal of Molluscan Studies, 81(2): 303-307. https://doi.org/10.1093/mollus/eyu087   DOI
34 Tran, D., H. Haberkorn, P. Soudant, P. Ciret, and J.-C. Massabuau, 2010. Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum, Aquaculture, 298(3-4): 338-345. https://doi.org/10.1016/j.aquaculture.2009.10.030   DOI
35 Riisgard, H.U., P.S. Larsen, and D. Pleissner, 2014. Allometric equations for maximum filtration rate in blue mussels Mytilus edulis and importance of condition index, Helgoland Marine Research, 68(1): 193-198. https://doi.org/10.1007/s10152-013-0377-9   DOI
36 Silvert, W. and D.S. Rao, 1992. Dynamic model of the flux of domoic acid, a neurotoxin, through a Mytilus edulis population, Canadian Journal of Fisheries and Aquatic Sciences, 49(2): 400-405. https://doi.org/10.1139/f92-045   DOI
37 Asakawa, M., K. Miyazawa, and T. Noguchi, 1993. Studies on paralytic shellfish poison (PSP) toxification of bivalves, in association with appearance of Alexandrium tamarense, in Hiroshima Bay, Hiroshima Prefecture, Journal of Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi), 34(1): 50-54. https://doi.org/10.3358/shokueishi.34_50   DOI
38 Amanhir, R., A. Benhadouch, H. Taleb, R. Leblad, P. Vale, and M. Blaghen, 2017. Weekly occurrence of Gymnodinium catenatum and paralytic shellfish poisoning in the Mediterranean shore of Morocco, International Journal of Biochemistry Research & Review, 17(2): 1-11. https://doi.org/10.9734/IJBCRR/2017/14413   DOI
39 Oh, S.J., J.-H. Lee, and S.-Y. Kim, 2013. Bio-monitoring system using shell valve movements of Pacific oyster (Crassostrea gigas) - I. Detecting abnormal shell valve movements under low salinity using a hall element sensor, Journal of the Korean Society for Marine Environment & Energy, 16(2): 138-142 (in Korean with English abstract). https://doi.org/10.23005/KSMLS.2016.1.1.25   DOI
40 Shumway, S.E., 1990. A review of the effects of algal blooms on shellfish and aquaculture, Journal of the World Aquaculture Society, 21(2): 65-104. https://doi.org/10.1111/j.1749-7345.1990.tb00529.x   DOI
41 Comeau, L.A., J.M. Babarro, P. Riobo, M. Scarratt, M. Starr, and R. Tremblay, 2019. PSP-producing dinoflagellate Alexandrium minutum induces valve microclosures in the mussel Mytilus galloprovincialis, Aquaculture, 500: 407-413. https://doi.org/10.1016/j.aquaculture.2018.10.025   DOI
42 Bricelj, V.M., J.H. Lee, A.D. Cembella, and D.M. Anderson, 1990. Uptake kinetics of paralytic shellfish toxins from the dinoflagellate Alexandrium fundyense in the mussel Mytilus edulis, Marine Ecology Progress Series, 63: 177-188. https://doi.org/10.3354/meps063177   DOI
43 Borcherding, J., 1992. Another early warning system for the detection of toxic discharges in the aquatic environment based on valve movements of the freshwater mussel Dreissena polymorpha, In: Neumann, D., Jenner, H.A. (eds), The Zebra Mussel Dreissena polymorpha: Ecological Biological Monitoring and First Applications in the Water Quality Management, Gustav Fischer Verlag, New York, NY, USA, pp. 127-146.
44 Borcherding, J., 2006. Ten years of practical experience with the Dreissena-Monitor, a biological early warning system for continuous water quality monitoring, Hydrobiologia, 556(1): 417-426. https://doi.org/10.1007/s10750-005-1203-4   DOI
45 Bricelj, V.M. and S.E. Shumway, 1998. Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics, and biotransformation, Reviews in Fisheries Science, 6(4): 315-383. https://doi.org/10.1080/10641269891314294   DOI