Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.4.3

Time-series InSAR Analysis and Post-processing Using ISCE-StaMPS Package for Measuring Bridge Displacements  

Vadivel, Suresh Krishnan Palanisamy (School of Earth and Environmental Sciences, Seoul National University)
Kim, Duk-jin (School of Earth and Environmental Sciences, Seoul National University)
Kim, Young Cheol (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Korean Journal of Remote Sensing / v.36, no.4, 2020 , pp. 527-534 More about this Journal
Abstract
This study aims to monitor the displacement of the bridges using Stanford Method for Persistent Scatterers (StaMPS) time-series Persistent Scatterer Interferometric Synthetic Aperture Radar analysis. For case study bridges: Kimdaejung bridge and Deokyang bridge, we acquired 60 and 33 Cosmo-Skymed Synthetic Aperture Radar (SAR) data over the Mokpo region and Yeosu region, respectively from 2013 to 2019. With single-look interferograms, we estimated the long-term time-series displacements over the bridges. The time-series displacements were estimated as -8.8 mm/year and -1.34 mm/year at the mid-span over the selected bridges: Kimdaejung and Deokyang bridge, respectively. This time-series displacement provides reliable and high spatial resolution information to monitor the structural behavior of the bridge for preventing structural behaviors.
Keywords
Bridge displacement; PS-InSAR; Cosmo-Skymed SAR data;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agram, P. S., R. Jolivet, B. Riel, Y. N. Lin, M. Simons, E. Hetland, M. P. Doin, and C. Lasserre. 2013. New Radar Interferometric Time Series Analysis Toolbox Released, Eos, Transactions American Geophysical Union, 94(7): 69-70.
2 Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383.   DOI
3 Chen, C. W. and H. A. Zebker, 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models, IEEE Transactions on Geoscience and Remote Sensing, 40(8): 1709-1719.   DOI
4 Del Soldato, M., R. Tomás, J. Pont Castillo, G. Herrera García, J. C. García Lopez-Davalillos, and O. Mora, 2016. A multi-sensor approach for monitoring a road bridge in the Valencia harbor (SE Spain) by SAR Interferometry (InSAR), Rendiconti Online Societa Geologica Italiana, 41: 235-238   DOI
5 Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller, E. Rodriguez, L. Roth, D. Seal, S. Shaffer, J. Shimada, J. Umland, M. Werner, M. Oskin, D. Burbank, and D. Alsdorf, 2007. The Shuttle Radar Topography Mission, Reviews of Geophysics, 45(2).
6 Ferretti, A., C. Prati, and F. Rocca, 2001. Permanent scatterers in SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20.   DOI
7 Hooper, A., H. Zebker, P. Segall, and B. Kampes, 2004. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophysical Research Letters, 31(23).
8 Hooper, A. J., 2005. Persistent scatter radar interferometry for crustal deformation studies and modeling of volcanic deformation, Journal of Geophysical Research, 112(B07407): 1-21.
9 Hooper, A. and H. A. Zebker, 2007. Phase unwrapping in three dimensions with application to InSAR time series, JOSA A, 24(9): 2737-2747.   DOI
10 Jung, J., D.-J. Kim, S. K. Palanisamy Vadivel, and S. Yun, 2019. Long-Term Deflection Monitoring for Bridges Using X and C-Band Time-Series SAR Interferometry, Remote Sensing, 11(11): 1258.   DOI
11 Yi, T.-H., H.-N. Li, and M. Gu, 2013. Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge, Measurement, 46(1): 420-432.   DOI
12 Parks, S., M. Yang, S. Gajan, and Q. Pei, 2018. Strengthbased differential tolerable settlement limits of bridges, Advances in Structural Engineering, 21(1): 46-58.   DOI