Browse > Article
http://dx.doi.org/10.7780/kjrs.2020.36.2.2.2

Application of GOCI to the Estimates of Primary Productivity in the Coastal Waters of the East Sea  

Choi, Jong-kuk (Korean Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Ahn, Jae-Hyun (Korean Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Son, Young Baek (Jeju Marine Research Center, Korea Institute of Ocean Science and Technology)
Hwang, Deuk-jae (Korean Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Lee, Sun Ju (Korean Ocean Satellite Center, Korea Institute of Ocean Science and Technology)
Publication Information
Korean Journal of Remote Sensing / v.36, no.2_2, 2020 , pp. 237-247 More about this Journal
Abstract
Here, we generated maps of primary production in the coastal waters of the East Sea using sea surface chlorophyll-a concentrations (CHL), photosynthetically available radiation (PAR), euphotic depth induced by GOCI along with sea surface temperature (SST) from satellites of foreign countries as input parameters, and carried out a sensitivity analysis for each parameters. On 25th of July in 2013 when a wide cold waters appeared and on 13th of August in 2013 when a big harmful algal bloom existed in the study area, it shows high productivities with averages 1,012 and 1,945 mg C m-2 d-1, respectively. On August 25, 2013, when the cold waters and red tide retreated, it showed an average of 778 m-2 d-1, similar to the results of the previous analysis. As a result of the sensitivity analysis, PAR did not significantly affect the results of the primary production, but the euphotic depth and CHL showed aboveaverage sensitivity. In particular, SST had a large influence to the results, thus we could imply that an error in SST could lead to a large error in the primary production. This study showed that GOCI data was available for primary production study, and the accuracy of input parameters might be improved by applying GOCI, which can acquire images 8 times a day, making it more accurate than foreign polar orbit satellites and consequently, it is possible to estimate highly accurately primary production.
Keywords
Primary production; GOCI; East Sea; Sensitivity analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choi, J. K., Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, 2012. GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity, Journal of Geophysical Research: Oceans, 117(9): 1-10.
2 Dash, P., A. Ignatov, M. Martin, C. Donlon, B. Brasnett, R. W. Reynolds, V. Banzon, H. Beggs, J.-F. Cayula, Y. Chao, R. Grumbine, E. Maturi, A. Harris, J. Mittaz, J. Sapper, T. M. Chin, J. Vazquez-Cuervo, E. M. Armstrong, C. Gentemann, J. Cummings, J.-F. Piolle , E. Autret, J. Robert-Jones, S. Ishizaki, J. L. Hoyer, and D. Poulter, 2012. Group for High Resolution Sea Surface Temperature (GHRSST) analysis fields intercomparisons-Part 2: Near real time web-based level 4 SST Quality Monitor (L4-SQUAM), Deep Sea Research Part II: Topical Studies in Oceanography, 77-80: 31-43.   DOI
3 Field, C. B., 1998. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components, Science, 281(5374): 237-240.   DOI
4 Forget, M., C. Fuentes-Yaco, S. Sathyendranath, T. Platt, J. Pommier, and E. Devred, 2007. Computation of primary production from remote sensing of ocean colour at the northwestern Atlantic CSOLAS Lagrangian site, Marine Ecology Progress Series, 352: 27-38.   DOI
5 Frouin, R. and J. McPherson, 2012. Estimating photosynthetically available radiation at the ocean surface from GOCI data, Ocean Science Journal, 47(3): 313-321.   DOI
6 Gupta, H. and S. Razavi, 2017. Chapter 20 - Challenges and Future Outlook of Sensitivity Analysis, In: Petropoulos, G.P., Srivastava, P.K. (Ed.), Sensitivity Analysis in Earth Observation Modelling, Elsevier, Amsterdam, Netherlands, pp. 397-415.
7 Hu, C., K. L. Carder, and F. E. Muller-Karger, 2000. Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters, Remote Sensing of Environment, 74(2): 195-206.   DOI
8 Kameda, T., 2003. Studies on oceanic primary production using ocean color remote sensing data, Bulletin of Fisheries Research Agency, 9: 118-148.
9 Joo, H., J. W. Park, S. Son, J.-H. Noh, J.-Y. Jeong, J. H. Kwak, S. Saux-Picart, J. H. Choi, C.-K. Kang, and S. H. Lee, 2014. Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea, Journal of Geophysical Research: Oceans, 119(5): 3002-3011.   DOI
10 Jorgensen, S.E., 2011. Fundamentals of Ecological Modelling, Elsevier, Amsterdam, Netherlands.
11 Kim, W., J.-E. Moon, Y.-J. Park, and J. Ishizaka, 2016. Evaluation of chlorophyll retrievals from Geosta - tionary Ocean Color Imager (GOCI) for the North-East Asian region, Remote Sensing of Environment, 184: 482-495.   DOI
12 Kameda, T. and J. Ishizaka, 2005. Size-fractionated primary production estimated by a two-phytoplankton community model applicable to ocean color remote sensing, Journal of Oceanography, 61(4): 663-672.   DOI
13 Kim, D. W., Y. H. Jo, J. K. Choi, J. G. Choi, and H. Bi, 2016. Physical processes leading to the development of an anomalously large Cochlodinium polykrikoides bloom in the East sea/Japan sea, Harmful Algae, 55: 250-258.   DOI
14 Kim, J., H. Yang, J.-K. Choi, J.-E. Moon, and R. Frouin, 2016. Estimating Photosynthetically Available Radiation from Geostationary Ocean Color Imager (GOCI) Data, Korean Journal of Remote Sensing, 32(3): 253-262 (in Korean with English abstract).   DOI
15 Kirk, J.T.O., 1994. Light and Photosynthesis in Aquatic Ecosystems: 2nd Edition, Cambridge University Press, Cambridge, UK.
16 Kwak, J. H., S. H. Lee, H. J. Park, E. J. Choy, H. D. Jeong, K. R. Kim, and C. K. Kang, 2013. Monthly measured primary and new productivities in the Ulleung Basin as a biological "hot spot" in the East/Japan Sea, Biogeosciences Discussions, 10(2): 2127-2158.   DOI
17 Noh, J. H., W. Kim, S. H. Son, J.-H. Ahn, and Y.-J. Park, 2018. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI), Harmful Algae, 73: 129-137.   DOI
18 Ahn, J.-H., Y.-J. Park, W. Kim, and B. Lee, 2016. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans, Optics Express, 24(26): 29659.   DOI
19 Moon, J.-E., Y.-J. Park, J.-H. Ryu, J.-K. Choi, J.-H. Ahn, J.-E. Min, Y.-B. Son, S.-J. Lee, H.-J. Han, and Y.-H. Ahn, 2012. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010-2011, Ocean Science Journal, 47(3): 261-277.   DOI
20 Morel, A., Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, and B. A. Franz, 2007. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach, Remote Sensing of Environment, 111(1): 69-88.   DOI
21 O'Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, 1998. Ocean color chlorophyll algorithms for SeaWiFS, Journal of Geophysical Research: Oceans, 103(C11): 24937-24953.   DOI
22 Park, Y.S. and S. Lek, 2016. Chapter 7 - Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling, In: S.E. Jorgensen (Ed.), Developments in Environmental Modelling, Elsevier, Amsterdam, Netherlands, pp. 123-140.
23 Siswanto, E., J. Ishizaka, and K. Yokouchi, 2006. Optimal primary production model and parameteri - zation in the eastern East China Sea, Journal of Oceanography, 62(3): 361-372.   DOI
24 Yamada, K., J. Ishizaka, and H. Nagata, 2005. Spatial and Temporal Variability of Satellite Primary Production in the Japan Sea from 1998 to 2002, Journal of Oceanography, 61(5): 857-869.   DOI
25 Yoon, S. and H. Yang, 2016. Study on the temporal and spatial variation in cold water zone in the East Sea using satellite data, Korean Journal of Remote Sensing, 32(6): 703-719 (in Korean with English abstract).   DOI
26 Campbell, J., D. Antoine, R. Armstrong, K. Arrigo, W. Balch, R. Barber, M. Behrenfeld, R. Bidigare, J. Bishop, M.-E. Carr, W. Esaias, P. Falkowski, N. Hoepffner, R. Iverson, D. Kiefer, S. Lohrenz, J. Marra, A. Morel, J. Ryan, V. Vedernikov, K. Waters, C. Yentsch, and J. Yoder, 2002. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance, Global Biogeochemical Cycles, 16(3): 9-1-9-15.   DOI
27 Ahn, J.-H., Y.-J. Park, W. Kim, B. Lee, and I. S. Oh, 2015. Vicarious calibration of the Geostationary Ocean Color Imager, Optics Express, 23(18): 23236.   DOI
28 Behrenfeld, M. J. and P. G. Falkowski, 1997. Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 42(1): 1-20.   DOI
29 Behrenfeld, M. J., J. T. Randerson, C. R. McClain, G. C. Feldman, S. O. Los, C. J. Tucker, P. G. Falkowski, C. B. Field, R. Frouin, W. E. Esaias, D. D. Kolber, and N. H. Pollack, 2001. Biospheric Primary Production During an ENSO Transition, Science, 291(5513): 2594-2597.   DOI
30 Carr, M.-E., M. A. M. Friedrichs, M. Schmeltz, M. Noguchi Aita, D. Antoine, K. R. Arrigo, I. Asanuma, O. Aumont, R. Barber, M. Behrenfeld, R. Bidigare, E. T. Buitenhuis, J. Campbell, A. Ciotti, H. Dierssen, M. Dowell, J. Dunne, W. Esaias, B. Gentili, W. Gregg, S. Groom, N. Hoepffner, J. Ishizaka, T. Kameda, C. Le Quere, S. Lohrenz, J. Marra, F. Melin, K. Moore, A. Morel, T. E. Reddy, J. Ryan, M. Scardi, T. Smyth, K. Turpie, G. Tilstone, K. Waters, and Y. Yamanaka, 2006. A comparison of global estimates of marine primary production from ocean color, Deep Sea Research Part II: Topical Studies in Oceanography, 53(5-7): 741-770.   DOI
31 Choi, J. K., J. E. Min, J. H. Noh, T. H. Han, S. Yoon, Y. J. Park, J. E. Moon, J. H. Ahn, S. M. Ahn, and J. H. Park, 2014. Harmful algal bloom (HAB) in the East Sea identified by the Geostationary Ocean Color Imager (GOCI), Harmful Algae, 39: 295-302.   DOI