Browse > Article

Inhibitory Effects of Bupleuri Radix on ox-LDL induced Foam Cell Formation  

Lee, Hye-Jin (Department of Preventive Medicine, College of Oriental Medicine, Gachon University)
Bae, Ho-Sung (Department of Preventive Medicine, College of Oriental Medicine, Gachon University)
Hwang, Gwi-Seo (Department of Preventive Medicine, College of Oriental Medicine, Gachon University)
Publication Information
Journal of Society of Preventive Korean Medicine / v.16, no.2, 2012 , pp. 113-124 More about this Journal
Abstract
The oxidative modification of low density lipoprotein(LDL) has been implicated in the development of atherosclerosis. Oxidized LDL(oxLDL) is captured into macrophage and stimulates to form macrophage foam cell. And it can induce an inflammation and smooth muscle proliferation in atherosclerotic plaque. Objective : In this study, we aimed to investigate the effect of Bupleuri radix(SH) on the foam cell formation, a critical initiation stage of atherosclerosis. Methods : To achieve the goal, we examined the effect of SH on LDL oxidation, nitric oxide production in RAW264.7, and the effect of SH on cupuric sulfate-induced cytotoxicity, LDH release, and macrophage activity. Results : SH inhibited the formation of oxidized LDL from native LDL in RAW264.7 cell culture, and decreased the release of LDH from cupric sulfate-stimulated RAW264.7 cell. In other experiments, SH activated RAW264.7 cell, and prolonged the survival time, and inhibited foam cell formation induced by oxLDL in Raw 264.7 cells. Conclusion : These results showed that SH might prevent atherosclerosis by controlling the early stages of foam cell formation.
Keywords
atherosclerosis; Bupleuri radix; LDL oxidation; foam cell; macrophage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kullo K.J., Gau G.T. and Tajik J. : Novel risk factors for atherosclerosis. Mayo Clin Proc 2000 ; 75 : 369-380.
2 Webb NR, Moore KJ. Macrophage-derived foam cells in atherosclerosis : lessons from murine models and implications for therapy. Curr Drug Targets. 2007 ; 8(12) : 1249-63.
3 Rios FJ, Koga MM, Ferracini M, Jancar S. Co-stimulation of PAFR and CD36 is required for oxLDL-induced human macrophages activation. PLoS One. 2012 ; 7(5) : e36632.
4 Park YM, Febbraio M, Silverstein RL. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009 ; 19(1) : 136-45.
5 Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006 ; 4(3) : 211-21.   DOI   ScienceOn
6 Tojo N, Asakura E, Koyama M, Tanabe T, Nakamura N. Effects of macrophage colony-stimulating factor (M-CSF) on protease production from monocyte, macrophage and foam cell in vitro : a possible mechanism for anti-atherosclerotic effect of M-CSF. Biochim Biophys Acta. 1999 ; 1452(3) : 275-84.   DOI   ScienceOn
7 van der Kooij MA, Morand OH, Kempen HJ, van Berkel TJ. Decrease in scavenger receptor expression in human monocyte-derived macrophages treated with granulocyte macrophage colony-stimulating factor. Arterioscler Thromb Vasc Biol. 1996 ; 16(1) : 106-14.   DOI   ScienceOn
8 James E. McLaren, Daryn R. Michael, Tim G. Ashlin, Dipak P. Ramji. Cytokines, macrophage lipid metabolism and foam cells : Implications for cardiovascular disease therapy. Progress in Lipid Research 2011 ; 50 : 331-347.   DOI   ScienceOn
9 Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 2004 ; 15(4) : 237-54.   DOI   ScienceOn
10 Ehrenwald, E., and P. L. Fox. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J. Clin. Invest. 1996 ; 97 : 884-890.   DOI
11 Rozenberg,O., et al. Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress : studies in PON1-knockout mice. Free Radic. Biol. Med. 2003 ; 34 : 774-784.   DOI   ScienceOn
12 Carr, A.C., M. R. McCall, and B. Frei. Oxidation of LDL by myeloperoxidase and reactive nitrogen species : reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 2000 ; 20 : 1716-1723.   DOI   ScienceOn
13 Rydberg, E. K., et al. Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages. Arterioscler. Thromb. Vasc. Biol. 2004 ; 24 : 2040-2045.   DOI   ScienceOn
14 Sakashita, T. et al. Essential involvement of 12-lipoxygenase in regio specific and stereospecific oxidation of low density lipoprotein by macrophages. Eur. J. Biochem. 1999 ; 265 : 825-831.   DOI   ScienceOn
15 Cathcart, M. K. Regulation of superoxide anion production by NADPH oxidase in monocytes/ macrophages : contributions to atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2004 ; 24 : 23-28.   DOI   ScienceOn
16 Xu, W., et al. Low density lipoprotein receptor-related protein is required for macrophage-mediated oxidation of low density lipoprotein by 12/15-lipoxygenase. J. Biol. Chem. 2001 ; 276 : 36454-36459.   DOI
17 Li, Q., and M. K. Cathcart. Selective inhibition of cytosolic phospholipase A2 in activated human monocytes. Regulation of superoxide anion production and low density lipoprotein oxidation. J. Biol. Chem. 1997 ; 272 : 2404-2411.   DOI
18 完譯中藥大辭典, 정담, p2622-2632, 1999
19 Kim SY, Yun-Choi HS. Platelet anti-aggregating activities of bupleurumin from the aerial parts of Bupleurum falcatum. Arch Pharm Res. 2007 ; 30(5) : 561-4.   DOI
20 Chen YL, Lin SZ, Chang JY, Cheng YL, Tsai NM, Chen SP, Chang WL, Harn HJ. In vitro and in vivo studies of a novel potential anticancer agent of isochaihulactone on human lung cancer A549 cells. Biochem Pharmacol. 2006 ; 72(3) : 308-19.   DOI   ScienceOn
21 Nakahara Y, Okawa M, Kinjo J, Nohara T. Oleanene glycosides of the aerial parts and seeds of Bupleurum falcatum and the aerial parts of Bupleurum rotundifolium, and their evaluation as anti-hepatitis agents. Chem Pharm Bull (Tokyo). 2011 ; 59(11) : 1329-39.   DOI   ScienceOn
22 이준무, 이은, 최무영. 시호(Bupleuri Radix)분말이 고콜레스테롤 급여 흰쥐의 체지질구성 및 TBARS 량에 미치는 영향. 대한본초학회지, 2000 ; 15(1) : 67-71
23 Hazen S.L. and Heinecke J.W. : 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalysed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99, 2075, 1997   DOI   ScienceOn
24 Leuwenburg C., Rasmussrn J.E. and Hsu F.F : Mass spectrometric quantitation of marker for protein oxidation by tyrosyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 1997 ; 272 : 3520.   DOI
25 Hashizume M, Mihara M. Cytokine. Atherogenic effects of TNF-${\alpha}$ and IL-6 via up-regulation of scavenger receptors. 2012 ; 58(3) : 424-30.   DOI   ScienceOn
26 Park JG, Oh GT. The role of peroxidases in the pathogenesis of atherosclerosis. BMB Rep. 2011 ; 44(8) : 497-505.   DOI
27 Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones. 2007 ; 39(2) : 86-93
28 Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res. 2003 ; 93(4) : 280-91.   DOI   ScienceOn