Browse > Article
http://dx.doi.org/10.5532/KJAFM.2022.24.4.285

A Practical Method to Quantify Very Low Fluxes of Nitrous Oxide from a Rice Paddy  

Okjung, Ju (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services)
Namgoo, Kang (Measurement Instrument and Data Verification Research Team, Advanced Measurement Instrumentation Institute, Korea Research Institute of Standards and Science)
Hoseup, Soh (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services)
Jung-Soo, Park (Environmental Agriculture Research Division, Gyeonggido Agricultural Research and Extension Services)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.24, no.4, 2022 , pp. 285-294 More about this Journal
Abstract
In order to accurately calculate greenhouse gas emissions in the agricultural field, Korea has been developing national-specific emission factors through direct measurement of gas fluxes using the closed-chamber method. In the rice paddy, only national-specific emission factors for methane (CH4) have been developed. It is thus necessary to develop those for nitrous oxide (N2O) affected by the application of nitrogen fertilizer. However, since the concentration of N2O emission from rice cultivation is very low, the QA/QC methods such as method detection and practical quantification limits are important. In this study, N2O emission from a rice paddy was evaluated affected by the amount of nitrogen fertilizer, by taking into account both method detection and practical quantification limits for N2O concentration. The N2O emission from a rice paddy soils affected by the nitrogen fertilizer application was estimated in the following order. The method detection limit (MDL) of N2O concentration was calculated at 95% confidence level based on the pooled standard deviation of concentration data sets using a standard gas with 98 nmol mol-1 N2O 10 times for 3 days. The practical quantification limit (PQL) of the N2O concentration is estimated by multiplying 10 to the pooled standard deviation. For the N2O flux data measured during the rice cultivation period in 2021, the MDL and PQL of N2O concentration were 18 nmol mol-1 and 87 nmol mol-1, respectively. The measured values above the PQL were merely about 12% of the total data. The cumulative N2O emission estimated based on the MDL and PQL was higher than the cumulative emission without nitrogen fertilizer application. This research would contribute to improving the reliability in quantification of the N2O flux data for accurate estimates of greenhouse gas emissions and uncertainties.
Keywords
Nitrous oxide flux; Rice paddy; Closed static chamber method; Quantification method;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Akiyama, H., and K. Yagi, 2005: Direct N2O emissions from rice paddy fields: Summary of available data. Global Biogeochemical Cycles 19(1). doi:10.1029/2004GB002378   DOI
2 Arbindra, T., F. Bizimana, B. Pandey, R. K. P. Yadav, W. Dong, and C. Hu, 2020: Nitrous Oxide Emissions from Paddies: Understanding the Role of Rice Plants. Plants 9, 180. doi:10.3390/plants9020180   DOI
3 Bertora, C., M. Peyron, S. Pelissetti, C. Grignani, and D. Sacco, 2018: Assessment of methane and nitrous oxide fluxes from paddy field by means of static closed chambers maintaining plants within headspace. Journal of Visualized Experiments 139, e56754. doi:10.3791/56756   DOI
4 Cai, Z., G. Xing, X. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami, 1997: Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil 196, 7-14.   DOI
5 Denmead, O. T., 1979: Chamber systems for measuring nitrous oxide emission from soils in the field. Soil Science Society of America Journal 43(1), 89-95.   DOI
6 Ellision, S. L. R., B. J. Barwick, and T. J. Duguid Farrat, 2009: Practical Statistics for the Analytical Scientist-A Bench Guide, 2nd ed., RSC Publishing, LGC, 155-156.
7 GRA (Global Research Alliance on Agricultural Greenhouse Gases), 2015: Nitrous Oxide Chamber Methodology Guidelines, 146pp.
8 GARES (Gyeong gi-do Agricultural Research and Extension Services), 2018: Agricultural Environment Experimental Analysis Method, 431pp. (in Korean)
9 GIR (Greenhouse gas Inventory and Research Center of Korea), 2020: National Greenhouse Gas Inventory Report of Korea, 438pp. (in Korean)
10 IPCC (Intergovernmental Panel on Climate Change), 2019: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 4, Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). IPCC Published, Switzerland.
11 Ju, O. J., Kang N. K., and Lim G. J, 2020: Measurement Uncertainty of Methane Concentrations from a Rice Paddy Measured by a Closed Automated Chamber System. Korean Journal of Environmental Agriculture 39(3), 228-236. (in Korean with English abstract)   DOI
12 Kim, G. Y., Park S. I., B. H. Song, and Y. K. Shin, 2002: Emission Characteristics of Methane and Nitrous Oxide by Management of Water and Nutrient in a Rice Paddy Soil. Korean Journal of Environmental Agriculture 21(2), 136-143.   DOI
13 Kim, G. Y., H. C. Jeong, O. K. Ju, H. K. Kim, J. H. Park, H. S. Gwon, and P. J. Kim, 2013: Establishment of Baseline Emission Factor of Methane in Korean Rice Paddy Soil. Korean Journal of Environmental Agriculture 32(4), 359-365. (in Korean with English abstract)   DOI
14 Kim G. Y., W. K. Park, H. C. Jeong, S. I. Lee, E. J. Choi, P. J. Kim, Y. H. Seo, and U. S. Na, 2015: A Revised Estimate of N2O Emission Factor for Spring Chinese cabbage fields in Korea. Korean Journal of Agricultural and Forest Meteorology 17(4), 326-332. (in Korean with English abstract)   DOI
15 Levy, P. E., A. Gray, S. R. Leeson, J. Gaiawyn, M. P. C. Kelly, M. D. A. Cooper, K. J. Dinsmore, S. K. Jones, and L. J. Sheppard, 2011: Quantification of uncertainty in trace gas fluxes measured by the static chamber method. European Journal of Soil Science 62, 811-821.   DOI
16 Livingston, G. P., and G. L. Hutchinson, 1995: Enclosure-based measurement of trace gas exchange: Applications and sources of error. In P.A. Matson and R.C. Harris (ed.) Biogenic trace gases: Measuring emissions from soil and water. 14-51. Blackwell Science, Oxford, UK.
17 NAS (National Institute of Agricultural Sciences), 2017: Fertilizer Prescription Standard by Crop, 336pp. (in Korean)
18 Matthias A.D., A.M. Blackmer, and J. M. Bremner, 1980: A simple Chamber Technique for field measurement of emissions of nitrous oxide from soils. Journal of Environmental Quality 9(2), 251-256. doi.org/10.2134/jeq1980.00472425000900020017x.   DOI
19 Minamikawa, K., T. Tokida, S. Sudo, A. Padre, and K. Yagi, 2015: Guidelines for measuring CH4 and N2O emissions from rice paddies by a manually operated closed chamber method. National Institute for Agro-Environmental Sciences, Tsukuba, Japan.
20 NAS (National Institute of Agricultural Sciences), 2000: Soil and Plant Analysis, 202pp. (in Korean)
21 Nishimura, S., T. Sawamoto, H. Akiyama, S. Sudo, and K. Yagi, 2004: Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Global Biogeochemical cycles 18, GB2017, doi: 10.1029/2003GB002207.   DOI
22 Parkin, T. B., R. T. Venterea, and S. K. Hargreaves, 2012: Calculating the detection limits of chamber-based soil greenhouse gas flux measurement. Journal of Environmental Quality 41, 705-715.   DOI
23 Pavelka, M., M. Acosta, R Kieses, N. Altimir, C. Brummer, P. Crill, E. Darenova, R. Fub, B. Gieleln, A. Graf, L. Klemedtsson, A. Lohila, B. Longdoz, A. Lindroth, M. Nilsson, S. M. Jimenez, L. Merbold, L. Montagnani, M .Peichl, M. Pihlatie, J. Pumpanen, P. S. Ortiz, H. Silvernnoinen, U. Skiba, P. Vestin, P. Weslien, D. Janous, and W. Kutsch, 2018: Standardisation of chamber technique for CO2, N2O and CH4 fluxes measurements from terrestrial ecosystems. International Agrophysics 32, 569-587.   DOI
24 USDA-ARS (U.S. Department of Agriculture, Agricultural Research Service), 2010: USDA-ARS GRACEnet Project Protocols, Chapter 3. Chamber-based Trace Gas Flux Measurements, 39pp.
25 Shang, Q, X. Yang, C Gao, P. Wu, J. Liu, Y Xu, Q Shen, J. Zou, and S. Guo, 2010: Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: a 3-year field measurement in long-term fertilizer experiment. Global change biology 17(6), 2196-2210.   DOI
26 Shcherbak, I, N. Millar, and G. P. Robertson, 2014: Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. PNAS 25(111), 9199-9204.   DOI
27 Smith, C. J., M. Brandon, and W. H. Patrick Jr., 1982: Nitrous oxide emission following urea-N fertilization of wetland rice. Soil Science and Plant Nutrition 28(2), 161-171.   DOI