Browse > Article
http://dx.doi.org/10.5532/KJAFM.2021.23.4.405

Estimation of Waxy Corn Harvest Date over South Korea Using PNU CGCM-WRF Chain  

Hur, Jina (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Kim, Yong Seok (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Jo, Sera (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Shim, Kyo Moon (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Ahn, Joong-Bae (Department of Atmospheric Sciences, Pusan National University)
Choi, Myeong-Ju (Department of Atmospheric Sciences, Pusan National University)
Kim, Young-Hyun (Department of Atmospheric Sciences, Pusan National University)
Kang, Mingu (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Choi, Won Jun (Climate Change Assessment Division, National Institute of Agricultural Sciences)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.23, no.4, 2021 , pp. 405-414 More about this Journal
Abstract
This study predicted waxy corn harvest date in South Korea using 30-year (1991-2020) hindcasts (1-6 month lead) produced by the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. To estimate corn harvest date, the cumulative temperature is used, which accumulated the daily observed and predicted temperatures from the seeding date (5 April) to the reference temperature (1,650~2,200℃) for harvest. In terms of the mean air temperature, the hindcasts with a bias correction (20.2℃) tends to have a cold bias of about 0.1℃ for the 6 months (April to September) compared to the observation (20.3℃). The harvest date derived from bias-corrected hindcasts (DOY 187~210) well simulates one from observation (DOY 188~211), despite a slight margin of 1.1~1.3 days. The study shows the possibility of obtaining the gridded (5 km) daily temperature and corn harvest date information based on the cumulative temperature in advance for all regions of South Korea.
Keywords
Air temperature; Waxy corn harvest date; PNU CGCM; WRF; Dynamical downscaling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liu, Y., R. Xie, P. Hou, S. Li, H. Zhang, B. Ming, H. Long, and S. Liang, 2013: Phenological responses of maize to changes in environment when grown at different latitudes in China. Field Crops Research 144, 192-199.   DOI
2 Shim, K. B., J. K. Lee, B. I. Koo, M. N. Shin, and S. T. Yoon, 2019: Determination of adaptable sowing dates of waxy corn using growing degree days in the central northern area of Korea. Korean Journal of Crop Science 64(3), 269-277 (in Korean with English abstract)
3 Sun, J., and J. B. Ahn, 2011: A GCM-based forecasting model for the landfall of tropical cyclones in China. Advances Atmospheric Sciences 28, 1049-1055.   DOI
4 Sun, J., and J. B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. International Journal of Climatology 35, 1342-1353.   DOI
5 RDA (Rural Development Administration), 2019: Agricultural technology guide 35: CORN, Rural Development Administration, 1-169.
6 Jung, G. H, J. E. Lee, J. H. Seo, S. L. Kim, D. W. Kim, J. T. Kim, T.-Y. Hwang, and Y. U. Kwon, 2012: Effects of seeding dates on harvesting time of double cropped waxy corn. Korean Journal of Crop Science 57(2), 195-201.   DOI
7 Im, E. S., S. Ha, L. Qiu, J. Hur, S. Jo, and K. M. Shim, 2021: An evaluation of temperature-based agricultural indices over Korea from the high-resolution WRF simulation, Frontiers in Earth Science 9, 357.
8 Ahn, J. B., K. M. Shim, M. P. Jung, H. G. Jeong, Y. H. Kim, and E. S. Kim, 2018a: Predictability of temperature over South Korea in PNU CGCM and WRF hindcast. Atmosphere 28, 479-490. (in Korean with English abstract).   DOI
9 Ahn, J. B., and J. L. Lee, 2015: Comparative study on the seasonal predictability dependency of boreal winter 2 m temperature and sea surface temperature on CGCM initial conditions. Atmosphere 25, 353-366. (in Korean with English abstract).   DOI
10 Ahn, J. B., J. Lee, and S. Jo, 2018b: Evaluation of PNU CGCM ensemble forecast system for boreal winter temperature over South Korea. Atmosphere 28, 509-520. (in Korean with English abstract).   DOI
11 Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEPDOE AMIP-II Reanalysis (R-2). Bulletin American Meteorological Society 83, 1631-1643.   DOI
12 Kim, M. J., G. H. Jung, S. K. Kim, J. E. Lee, W. T. Jeon, K. B. Shim, M. T. Kim, K. S. Woo, Y. U. Kwon, and S. Heu, 2017: Effects of growing degree days on growth and yield of maize depending on the sowing date. Korean Journal of Crop Science 62(3), 214-223. (in Korean with English abstract)   DOI
13 Kim, Y. H., E. S. Kim, M. J. Choi, K. M. Shim, and J. B. Ahn, 2019: Evaluation of long-term seasonal predictability of heatwave over South Korea using PNU CGCM-WRF chain. Atmosphere 29(5), 671-687. (in Korean with English abstract)   DOI
14 RDA (Rural Development Administration), 2021: Accumulated temperature required for silking and harvesting of major varieties of waxy corn. NONGSARO (Portal for agricultural technology)
15 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN- 475+STR, 125pp.
16 Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Monthly Weather Review 126, 1013-1021.   DOI