Browse > Article
http://dx.doi.org/10.5532/KJAFM.2016.18.3.170

The Use and Abuse of Climate Scenarios in Agriculture  

Kim, Jin-Hee (Agricultural Climatology Lab., College of Life Sciences, Kyung Hee University)
Yun, Jin I. (Agricultural Climatology Lab., College of Life Sciences, Kyung Hee University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.18, no.3, 2016 , pp. 170-178 More about this Journal
Abstract
It is not clear how to apply the climate scenario to assess the impact of climate change in the agricultural sector. Even if you apply the same scenario, the result can vary depending on the temporal-spatial downscaling, the post-treatment to adjust the bias of a model, and the prediction model selection (used for an impact assessment). The end user, who uses the scenario climate data, should select climate factors, a spatial extend, and a temporal range appropriate for the objectives of an analysis. It is important to draw the impact assessment results with minimum uncertainty by evaluating the suitability of the data including the reproducibility of the past climate and calculating the optimum future climate change scenario. This study introduced data processing methods for reducing the uncertainties in the process of applying the future climate change scenario to users in the agricultural sector and tried to provide basic information for appropriately using the scenario data in accordance with the study objectives.
Keywords
Climate scenario; Uncertainty; Downscaling; Bias correction;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Jung, H. C., and M. S. Suh, 2015: Correction of mean and extreme temperature simulation over south Korea using a trend-preserving bias correction method. Atmosphere, 25(2), 205-219.   DOI
2 Kim, C., and M. S. Suh, 2013: Prospects of using Bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea. Asia-Pacific Journal of Atmospheric Sciences, 49(3), 301-311.   DOI
3 Kim, G. Y., J. E. Kim, C. J. Kim, C. S. Jin, D. H. Cha, M. S. Suh, and S. C. Park, 2014b: Climate change projections over CORDEX East Asia domain using multi-RCMs. KU Climate Research, 9(4). 257-268.   DOI
4 Kim, J. H., and J. I. Yun, 2015: Projections of future summer weather in Seoul and their impacts on urban agriculture. Korean Journal of Agricultural and Forest Meteorology, 17(2), 182-189.   DOI
5 Kim, J. H., H. R. Cho, and Y. S. Cho, 2014a: Projection of climate change with uncertainties: 1. GCM and RCP uncertainties. Journal of Korean Society of Hazard Mitigation, 14(5), 317-327.
6 Kim, M. K., D. H. Lee, and J. Kim, 2013: Production and validation of daily grid data with 1 km resolution in South Korea. Weather Research, 8(1), 13-25.
7 Kim, M., 2015: Development of weather generator for statistical downscaling. APCC, Busan, South Korea.
8 KMA, 2014: Korean Climate Change Assessment Report 2014: The Physical Science Basis. Korea Meteorological Administration.
9 Lee, J. K., and Y. O. Kim, 2009: Reducing uncertainties in climate change assessment. Journal of Hydro Environment Research, 345-351.
10 Lee, J. K., and Y. O. Kim, 2015: Verification of bias corrected simulations of climate models using entropy. Journal of Korean Society of Hazard Mitigation, 15(5), 25-35.   DOI
11 ME, 2014: Korean Climate Change Assessment Report 2014 : Impacts, Adaptation and Vulnerability. Ministry of Environment.
12 Myoung, J. S., S. G. Oh, and M. S. Suh, 2012: Improvement of simulated air temperature of regional climate model using linear regression method. Journal of Climate Research, 255-270.
13 NIMS, 2011: IPCC 5차 평가보고서 대응을 위한 기후 변화 시나리오 보고서 2011. National Institute of Meteorological Research, 1-112.
14 NIMS, 2012: IPCC 5차 평가보고서 대응을 위한 전지구 기후변화 보고서 2012. National Institute of Meteorological Research, 1-97.
15 Oh, S. G., and M. S. Suh, 2016: Comparison of projection skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution. Theoretical and Applied Climatology, 1-20.
16 Park, J., M. S. Kang, and I. Song, 2012: Bias correction of RCP-based future extreme precipitation using a quantile mapping method; For 20-weather stations of South Korea. Journal of the Korean Society of Agricultural Engineers, 54(6), 133-142.
17 Shin, Y., and H. Jung, 2015: Assessing uncertainty in future climate change in Northeast Asia using multiple CMIP5 GCMs with four RCP scenarios. Journal of Environmental Impact Assessment, 24(3), 205-216.   DOI
18 So, B. J., M. J. Kim, and H. H. Kwon, 2012: Forecast and assessment of the next generation climate change scenarios of Korea Meteorological Administration. Magazine of Korea Water Resources Association, 45(8), 56-70.
19 Sung M. K., 2016: Intercomparison of prediction skills of ensemble methods using monthly mean temperature simulated by CMIP5 Models, MS thesis, Kongju University. 1-39.
20 Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. Journal of Climate, 25(20), 7067-7082.   DOI
21 Yoon, J. H., L. Ruby Leung, and Jr. Correia, 2012: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. Journal of Geophysical Research: Atmospheres, 117(D21).
22 Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075.   DOI
23 Wilby, R. L., and S. Dessai, 2010: Robust adaptation to climate change. Weather, 65(7), 180-185.   DOI
24 Wilby, R. L., L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavesley, and M. P. Clark, 2000: Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 27(8), 1199-1202.   DOI
25 Yun, J. I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12, 63-73. (In Korean with English abstract)   DOI
26 Chung, U., J. Cho, and E. J. Lee, 2015: Evaluation of agro-climatic index using multi-model ensemble downscaled climate prediction of CMIP5. Korean Journal of Agricultural and Forest Meteorology, 17(2), 108-125.   DOI
27 Ahn, J. B., J. N. Hur, and K. M. Shim, 2010: A simulation of agro-climate index over the Korean Peninsula using dynamical downscaling with a numerical weather prediction model. Korean Journal of Agricultural and Forest Meteorology, 12(1), 1-10.   DOI
28 Ahn, J. B., J. Y. Hong, and M. S. Seo, 2013: Present-day climate of the Korean Peninsula centered Northern East Asia based on CMIP5 historical scenario using fine-resolution WRF. Atmosphere, 23(4), 527-538.   DOI
29 Bae, D. H., I. W. Jung, B. J. Lee, and M. H. Lee, 2011: Future Korean water resources projection considering uncertainty of GCMs and hydrological models. Journal of Korea Water Resources Association 44(5), 389-406.   DOI
30 Cho, J., 2013: APCC Research Report 2013-05: 불확실성을 고려한 농업용 저수지의 기후변화 영향 평가. Apec Climate Center, 55-104.
31 Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3-4), 527-546.   DOI
32 Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nature Climate Change, 3(12), 1033-1038.   DOI
33 Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, 2013: A trend-preserving bias correction-the ISI-MIP approach. Earth System Dynamics, 4(2), 219-236.   DOI
34 Giorgi, F. and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method. Journal of Climate, 15(10), 1141-1158.   DOI
35 GNU, 2014: Development of Mitigation Strategies for Agricultural Infrastructure Against Climatic Hazard. 농촌진흥청 최종보고서(과제번호: PJ008335), GyeongSang National University.
36 Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383-3390.   DOI
37 Guyennon, N., E. Romano, I. Portoghese, F. Salerno, S. Calmanti, A. B. Petrangeli, G. Tartari and D. Copetti, 2013: Benefits from using combined dynamicalstatistical downscaling approaches-lessons from a case study in the Mediterranean region. Hydrology and Earth System Sciences, 17, 705-720.   DOI
38 Hashino, T., A. A. Bradley, and S. S. Schwartz, 2006: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Sciences Discussions, 3(2), 561-594.   DOI
39 Im, E. S., I. W. Jung, and D. H. Bae, 2011: The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. International Journal of Climatology, 31(1), 72-86.   DOI
40 IPCC, 2013: The physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535pp.
41 IPCC, 2014: Climate change 2014: synthesis report contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], Geneva, Switzerland, 151pp.