1 |
Jung, H. C., and M. S. Suh, 2015: Correction of mean and extreme temperature simulation over south Korea using a trend-preserving bias correction method. Atmosphere, 25(2), 205-219.
DOI
|
2 |
Kim, C., and M. S. Suh, 2013: Prospects of using Bayesian model averaging for the calibration of one-month forecasts of surface air temperature over South Korea. Asia-Pacific Journal of Atmospheric Sciences, 49(3), 301-311.
DOI
|
3 |
Kim, G. Y., J. E. Kim, C. J. Kim, C. S. Jin, D. H. Cha, M. S. Suh, and S. C. Park, 2014b: Climate change projections over CORDEX East Asia domain using multi-RCMs. KU Climate Research, 9(4). 257-268.
DOI
|
4 |
Kim, J. H., and J. I. Yun, 2015: Projections of future summer weather in Seoul and their impacts on urban agriculture. Korean Journal of Agricultural and Forest Meteorology, 17(2), 182-189.
DOI
|
5 |
Kim, J. H., H. R. Cho, and Y. S. Cho, 2014a: Projection of climate change with uncertainties: 1. GCM and RCP uncertainties. Journal of Korean Society of Hazard Mitigation, 14(5), 317-327.
|
6 |
Kim, M. K., D. H. Lee, and J. Kim, 2013: Production and validation of daily grid data with 1 km resolution in South Korea. Weather Research, 8(1), 13-25.
|
7 |
Kim, M., 2015: Development of weather generator for statistical downscaling. APCC, Busan, South Korea.
|
8 |
KMA, 2014: Korean Climate Change Assessment Report 2014: The Physical Science Basis. Korea Meteorological Administration.
|
9 |
Lee, J. K., and Y. O. Kim, 2009: Reducing uncertainties in climate change assessment. Journal of Hydro Environment Research, 345-351.
|
10 |
Lee, J. K., and Y. O. Kim, 2015: Verification of bias corrected simulations of climate models using entropy. Journal of Korean Society of Hazard Mitigation, 15(5), 25-35.
DOI
|
11 |
ME, 2014: Korean Climate Change Assessment Report 2014 : Impacts, Adaptation and Vulnerability. Ministry of Environment.
|
12 |
Myoung, J. S., S. G. Oh, and M. S. Suh, 2012: Improvement of simulated air temperature of regional climate model using linear regression method. Journal of Climate Research, 255-270.
|
13 |
NIMS, 2011: IPCC 5차 평가보고서 대응을 위한 기후 변화 시나리오 보고서 2011. National Institute of Meteorological Research, 1-112.
|
14 |
NIMS, 2012: IPCC 5차 평가보고서 대응을 위한 전지구 기후변화 보고서 2012. National Institute of Meteorological Research, 1-97.
|
15 |
Oh, S. G., and M. S. Suh, 2016: Comparison of projection skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution. Theoretical and Applied Climatology, 1-20.
|
16 |
Park, J., M. S. Kang, and I. Song, 2012: Bias correction of RCP-based future extreme precipitation using a quantile mapping method; For 20-weather stations of South Korea. Journal of the Korean Society of Agricultural Engineers, 54(6), 133-142.
|
17 |
Shin, Y., and H. Jung, 2015: Assessing uncertainty in future climate change in Northeast Asia using multiple CMIP5 GCMs with four RCP scenarios. Journal of Environmental Impact Assessment, 24(3), 205-216.
DOI
|
18 |
So, B. J., M. J. Kim, and H. H. Kwon, 2012: Forecast and assessment of the next generation climate change scenarios of Korea Meteorological Administration. Magazine of Korea Water Resources Association, 45(8), 56-70.
|
19 |
Sung M. K., 2016: Intercomparison of prediction skills of ensemble methods using monthly mean temperature simulated by CMIP5 Models, MS thesis, Kongju University. 1-39.
|
20 |
Suh, M. S., S. G. Oh, D. K. Lee, D. H. Cha, S. J. Choi, C. S. Jin, and S. Y. Hong, 2012: Development of new ensemble methods based on the performance skills of regional climate models over South Korea. Journal of Climate, 25(20), 7067-7082.
DOI
|
21 |
Yoon, J. H., L. Ruby Leung, and Jr. Correia, 2012: Comparison of dynamically and statistically downscaled seasonal climate forecasts for the cold season over the United States. Journal of Geophysical Research: Atmospheres, 117(D21).
|
22 |
Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1857), 2053-2075.
DOI
|
23 |
Wilby, R. L., and S. Dessai, 2010: Robust adaptation to climate change. Weather, 65(7), 180-185.
DOI
|
24 |
Wilby, R. L., L. E. Hay, W. J. Gutowski, R. W. Arritt, E. S. Takle, Z. Pan, G. H. Leavesley, and M. P. Clark, 2000: Hydrological responses to dynamically and statistically downscaled climate model output. Geophysical Research Letters, 27(8), 1199-1202.
DOI
|
25 |
Yun, J. I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12, 63-73. (In Korean with English abstract)
DOI
|
26 |
Chung, U., J. Cho, and E. J. Lee, 2015: Evaluation of agro-climatic index using multi-model ensemble downscaled climate prediction of CMIP5. Korean Journal of Agricultural and Forest Meteorology, 17(2), 108-125.
DOI
|
27 |
Ahn, J. B., J. N. Hur, and K. M. Shim, 2010: A simulation of agro-climate index over the Korean Peninsula using dynamical downscaling with a numerical weather prediction model. Korean Journal of Agricultural and Forest Meteorology, 12(1), 1-10.
DOI
|
28 |
Ahn, J. B., J. Y. Hong, and M. S. Seo, 2013: Present-day climate of the Korean Peninsula centered Northern East Asia based on CMIP5 historical scenario using fine-resolution WRF. Atmosphere, 23(4), 527-538.
DOI
|
29 |
Bae, D. H., I. W. Jung, B. J. Lee, and M. H. Lee, 2011: Future Korean water resources projection considering uncertainty of GCMs and hydrological models. Journal of Korea Water Resources Association 44(5), 389-406.
DOI
|
30 |
Cho, J., 2013: APCC Research Report 2013-05: 불확실성을 고려한 농업용 저수지의 기후변화 영향 평가. Apec Climate Center, 55-104.
|
31 |
Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3-4), 527-546.
DOI
|
32 |
Fischer, E. M., U. Beyerle, and R. Knutti, 2013: Robust spatially aggregated projections of climate extremes. Nature Climate Change, 3(12), 1033-1038.
DOI
|
33 |
Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek, 2013: A trend-preserving bias correction-the ISI-MIP approach. Earth System Dynamics, 4(2), 219-236.
DOI
|
34 |
Giorgi, F. and L. O. Mearns, 2002: Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the "reliability ensemble averaging" (REA) method. Journal of Climate, 15(10), 1141-1158.
DOI
|
35 |
GNU, 2014: Development of Mitigation Strategies for Agricultural Infrastructure Against Climatic Hazard. 농촌진흥청 최종보고서(과제번호: PJ008335), GyeongSang National University.
|
36 |
Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383-3390.
DOI
|
37 |
Guyennon, N., E. Romano, I. Portoghese, F. Salerno, S. Calmanti, A. B. Petrangeli, G. Tartari and D. Copetti, 2013: Benefits from using combined dynamicalstatistical downscaling approaches-lessons from a case study in the Mediterranean region. Hydrology and Earth System Sciences, 17, 705-720.
DOI
|
38 |
Hashino, T., A. A. Bradley, and S. S. Schwartz, 2006: Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Sciences Discussions, 3(2), 561-594.
DOI
|
39 |
Im, E. S., I. W. Jung, and D. H. Bae, 2011: The temporal and spatial structures of recent and future trends in extreme indices over Korea from a regional climate projection. International Journal of Climatology, 31(1), 72-86.
DOI
|
40 |
IPCC, 2013: The physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA, 1535pp.
|
41 |
IPCC, 2014: Climate change 2014: synthesis report contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], Geneva, Switzerland, 151pp.
|